×

Asymptotic and finite-time cluster synchronization of neural networks via two different controllers. (English) Zbl 1500.93118

Summary: In this paper, by using a pinning impulse controller and a hybrid controller respectively, the research difficulties of asymptotic synchronization and finite time cluster synchronization of time-varying delayed neural networks are studied. On the ground of Lyapunov stability theorem and Lyapunov-Razumikhin method, a novel sufficient criterion on asymptotic cluster synchronization of time-varying delayed neural networks is obtained. Utilizing finite-time stability theorem and hybrid control technology, a sufficient criterion on finite-time cluster synchronization is also obtained. In order to deal with time-varying delay and save control cost, pinning pulse control is introduced to promote the realization of asymptotic cluster synchronization. Following the idea of pinning control scheme, we design a progressive hybrid control to promote the realization of finite time cluster synchronization. Finally, an example is given to illustrate the theoretical results.

MSC:

93D40 Finite-time stability
93D20 Asymptotic stability in control theory
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
93C27 Impulsive control/observation systems

References:

[1] A. Abdurahman and H. Jiang, Improved control schemes for projective synchronization of delayed neural networks with unmatched coefficients, International Journal of Pattern Recognition and Artificial Intelligence, 34, (2020), 2051005.
[2] C. Aouiti; M. Bessifi; X. Li, Finite-time and fixed-time synchronization of complex-valued recurrent neural networks with discontinuous activations and time-varying delays, Circuits Systems and Signal Processing, 39, 5406-5428 (2020) · Zbl 1517.93036
[3] J. Cao; G. Chen; P. Li, Generalized analytical solutions and experimental confirmation of complete synchronization in a class of mutually-coupled simple nonlinear electronic circuits, Nonlinear Sciences, 113, 294-307 (2017)
[4] S. Ding; Z. Wang, Synchronization of coupled neural networks via an event-dependent intermittent pinning control, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 6, 1-7 (2020) · doi:10.1109/TSMC.2020.3035173
[5] P. He, S.-H. Ma and T. Fan, Finite-time mixed outer synchronization of complex networks with coupling time-varying delay, Chaos, 22 (2012), 043151, 11 pp. · Zbl 1319.34104
[6] W. He; F. Qian; J. Cao, Pinning-controlled synchronization of delayed neural networks with distributed-delay coupling via impulsive control, Neural Networks, 85, 1-9 (2017) · Zbl 1429.93351 · doi:10.1016/j.neunet.2016.09.002
[7] Z. Hou, J. P., Z. Liu, J. Zou and J. Luo, Theory of functional differential equations, Journal of Changsha Railway University.
[8] A. Hu; J. Cao; M. Hu; L. Guo, Cluster synchronization of complex networks via event-triggered strategy under stochastic sampling, Phys. A, 434, 99-110 (2015) · Zbl 1400.93284 · doi:10.1016/j.physa.2015.03.065
[9] X. Jin; Z. Wang; H. Yang; Q. Song; M. Xiao, Synchronization of multiplex networks with stochastic perturbations via pinning adaptive control, J. Franklin Inst., 358, 3994-4012 (2021) · Zbl 1464.93076 · doi:10.1016/j.jfranklin.2021.03.004
[10] A. A. Koronovskii; O. I. Moskalenko; V. I. Ponomarenko; M. D. Prokhorov; A. E. Hramov, Binary generalized synchronization, Chaos Solitons Fractals, 83, 133-139 (2016) · Zbl 1355.34081 · doi:10.1016/j.chaos.2015.11.045
[11] R. Kumar; S. Sarkar; S. Das; J. Cao, Projective synchronization of delayed neural networks with mismatched parameters and impulsive effects, IEEE Trans. Neural Netw. Learn. Syst., 31, 1211-1221 (2020) · doi:10.1109/TNNLS.2019.2919560
[12] K. Li; J. Zhao; H. Zhang; X. Li, On successive lag synchronization of a dynamical network with delayed couplings, IEEE Trans. Control Netw. Syst., 8, 1151-1162 (2021) · doi:10.1109/TCNS.2021.3059218
[13] W. Li; J. Zhou; J. Li; T. Xie; J.-A. Lu, Cluster synchronization of two-layer networks via aperiodically intermittent pinning control, IEEE Transactions on Circuits and Systems II: Express Briefs, 68, 1338-1342 (2020) · doi:10.1109/TCSII.2020.3027592
[14] X. Li; D. Peng; J. Cao, Lyapunov stability for impulsive systems via event-triggered impulsive control, IEEE Trans. Automat. Control, 65, 4908-4913 (2020) · Zbl 1536.93638 · doi:10.1109/TAC.2020.2964558
[15] X. Li, X. Yang and J. Cao, Event-triggered impulsive control for nonlinear delay systems, Automatica J. IFAC, 117 (2020), 108981, 7 pp. · Zbl 1441.93179
[16] L. Liu, K. Liu, H. Xiang and Q. Liu, Cluster synchronization for directed complex dynamical networks via pinning control, Physica A: Statistical Mechanics and its Applications, 545 (2020), 123580, 9 pp.
[17] L. Liu and Q. Liu, Cluster synchronization in complex dynamical network of nonidentical nodes with delayed and non-delayed coupling via pinning control, Physica Scripta, 94.
[18] P. Liu; Z. Zeng; J. Wang, Asymptotic and finite-time cluster synchronization of coupled fractional-order neural networks with time delay, IEEE Trans. Neural Netw. Learn. Syst., 31, 4956-4967 (2020) · doi:10.1109/TNNLS.2019.2962006
[19] S. Liu; N. Jiang; A. Zhao; Y. Zhang; K. Qiu, Secure optical communication based on cluster chaos synchronization in semiconductor lasers network, IEEE Access, 8, 11872-11879 (2020) · doi:10.1109/ACCESS.2020.2965960
[20] S. Liu; H. Wu; J. Cao, Fixed-time synchronization for discontinuous delayed complex-valued networks with semi-Markovian switching and hybrid couplings via adaptive control, Internat. J. Adapt. Control Signal Process., 34, 1359-1382 (2020) · Zbl 1522.93160 · doi:10.1002/acs.3153
[21] X. Liu; T. Chen, Finite-time and fixed-time cluster synchronization with or without pinning control, IEEE Transactions on Cybernetics, 48, 240-252 (2018) · doi:10.1109/TCYB.2016.2630703
[22] J. Mei; M. Jiang; W. Xu; B. Wang, Finite-time synchronization control of complex dynamical networks with time delay, Commun. Nonlinear Sci. Numer. Simul., 18, 2462-2478 (2013) · Zbl 1311.34157 · doi:10.1016/j.cnsns.2012.11.009
[23] A. Ouannas, X. Wang, V.-T. Pham, G. Grassi and T. Ziar, Coexistence of identical synchronization, antiphase synchronization and inverse full state hybrid projective synchronization in different dimensional fractional-order chaotic systems, Adv. Difference Equ., 2018 (2018), Paper No. 35, 16 pp. · Zbl 1445.34093
[24] L. Pan; J. Cao; U. Al-Juboori; M. Abdel-Aty, Cluster synchronization of stochastic neural networks with delay via pinning impulsive control, Neurocomputing, 366, 109-117 (2019)
[25] F. Ren; F. Cao; J. Cao, Mittag-Leffler stability and generalized Mittag-Leffler stability of fractional-order gene regulatory networks, Neurocomputing, 160, 185-190 (2015) · doi:10.1016/j.neucom.2015.02.049
[26] D. Senthilkumar; M. Lakshmanan; J. Kurths, Phase synchronization in unidirectionally coupled ikeda time-delay systems, Nonlinear Sciences, 164, 35-44 (2008)
[27] H. Wang; Z.-Z. Han; Q.-Y. Xie; W. Zhang, Finite-time chaos control via nonsingular terminal sliding mode control, Commun. Nonlinear Sci. Numer. Simul., 14, 2728-2733 (2009) · Zbl 1221.37225 · doi:10.1016/j.cnsns.2008.08.013
[28] Y. Wang; Z. Ma; J. Cao; A. Alsaedi; F. E. Alsaadi, Adaptive cluster synchronization in directed networks with nonidentical nonlinear dynamics, Complexity, 21, 380-387 (2016) · doi:10.1002/cplx.21816
[29] Q. Wu; J. Zhou; L. Xiang, Global exponential stability of impulsive differential equations with any time delays, Appl. Math. Lett., 23, 143-147 (2010) · Zbl 1210.34105 · doi:10.1016/j.aml.2009.09.001
[30] W. Wu; W. Zhou; T. Chen, Cluster synchronization of linearly coupled complex networks under pinning control, IEEE Trans. Circuits Syst. I. Regul. Pap., 56, 829-839 (2009) · Zbl 1468.93140 · doi:10.1109/TCSI.2008.2003373
[31] Y. Wu; L. Guo, Enhancement of intercellular electrical synchronization by conductive materials in cardiac tissue engineering, IEEE Transactions on Biomedical Engineering, 65, 264-272 (2018) · doi:10.1109/TBME.2017.2764000
[32] Z. Wu; Q. Ye; D. Liu, Finite-time synchronization of dynamical networks coupled with complex-variable chaotic systems, International Journal of Modern Physics C, 24, 1350058 (2013) · doi:10.1142/S0129183113500587
[33] X. Xiong, X. Yang, J. Cao and R. Tang, Finite-time control for a class of hybrid systems via quantized intermittent control, Sci. China Inf. Sci., 63 (2020), Paper No. 192201, 16 pp.
[34] Z. Xu; P. Shi; H. Su; Z.-G. Wu; T. Huang, Global \(H_\infty\) pinning synchronization of complex networks with sampled-data communications, IEEE Trans. Neural Netw. Learn. Syst., 29, 1467-1476 (2018) · doi:10.1109/TNNLS.2017.2673960
[35] Q. Yang; H. Wu; J. Cao, Global cluster synchronization in finite time for complex dynamical networks with hybrid couplings via aperiodically intermittent control, Optimal Control Appl. Methods, 41, 1097-1117 (2020) · Zbl 1469.93094 · doi:10.1002/oca.2589
[36] S. Yang; C. Hu; J. Yu; H. Jiang, Finite-time cluster synchronization in complex-variable networks with fractional-order and nonlinear coupling, Neural networks: The official journal of the International Neural Network Society, 135, 212-224 (2021) · Zbl 1525.93401 · doi:10.1016/j.neunet.2020.12.015
[37] J. Zha; C. Li, Synchronization of complex network based on the theory of gravitational field, Acta Phys. Polon. B, 50, 87-114 (2019) · Zbl 07913250 · doi:10.5506/APhysPolB.50.87
[38] J. Zhou; J. Chen; J. Lu; J. Lü, On applicability of auxiliary system approach to detect generalized synchronization in complex network, IEEE Trans. Automat. Control, 62, 3468-3473 (2017) · Zbl 1370.34095 · doi:10.1109/TAC.2016.2615679
[39] S. Zhu; J. Zhou; X. Yu; J. Lu, Bounded synchronization of heterogeneous complex dynamical networks: A unified approach, IEEE Trans. Automat. Control, 66, 1756-1762 (2021) · Zbl 1536.93845 · doi:10.1109/TAC.2020.2995822
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.