×

Active fault-tolerant predictive control of networked systems subject to actuator faults and random communication constraints. (English) Zbl 1500.93025

Summary: The fault-tolerant control problem is investigated for a linear networked system subject to an additive actuator fault as well as random network delays and packet dropouts in the backward and forward channels. To deal with the adverse effects of the actuator fault as well as those communication constraints, an active compensation scheme combining active fault-tolerant control and predictive control is proposed based on the simultaneous estimation of the system state and actuator fault. The obtained closed-loop system is a randomly switched system with bounded round-trip time delays, and the corresponding closed-loop stability condition is derived by using a switched Lyapunov approach. Simulation results for a networked DC motor system are provided to verify the proposed method.

MSC:

93B35 Sensitivity (robustness)
93B70 Networked control
93C05 Linear systems in control theory
Full Text: DOI

References:

[1] Bahreini, M.; Zarei, J., Robust fault-tolerant control for networked control systems subject to random delays via static-output feedback, ISA Transactions, 86, 9, 153-162 (2019) · doi:10.1016/j.isatra.2018.10.034
[2] Bahreini, M.; Zarei, J., Robust finite-time fault-tolerant control for networked control systems with random delays: A Markovian jump system approach, Nonlinear Analysis: Hybrid Systems, 36, 1 (2020) · Zbl 1441.93320 · doi:10.1016/j.nahs.2020.100873
[3] Boem, F.; Gallo, A. J.; Raimondo, D. M.; Parisini, T., Distributed fault-tolerant control of large-scale systems: An active fault diagnosis approach, IEEE Transactions on Control of Network Systems, 7, 1, 288-301 (2020) · Zbl 1516.93034 · doi:10.1109/TCNS.6509490
[4] Cao, Y.; Song, Y.-D., Adaptive PID-like fault-tolerant control for robot manipulators with given performance specifications, International Journal of Control, 93, 3, 377-386 (2020) · Zbl 1440.93125 · doi:10.1080/00207179.2018.1468928
[5] Chu, X.; Li, M., Event-triggered fault estimation and sliding mode fault-tolerant control for a class of nonlinear networked control systems, Journal of The Franklin Institute-Engineering and Applied Mathematics, 355, 13, 5475-5502 (2018) · Zbl 1451.93232 · doi:10.1016/j.jfranklin.2018.06.002
[6] Dhar, N. K.; Verma, N. K.; Behera, L.; Jamshidi, M. M., On an integrated approach to networked climate control of a smart home, IEEE Systems Journal, 12, 2, 1317-1328 (2018) · doi:10.1109/JSYST.2016.2619366
[7] Ding, L.; Han, Q.-L.; Guo, G., Network-based leader-following consensus for distributed multi-agent systems, Automatica, 49, 7, 2281-2286 (2013) · Zbl 1364.93014 · doi:10.1016/j.automatica.2013.04.021
[8] Finke, J.; Passino, K. M.; Sparks, A. G., Stable task load balancing strategies for cooperative control of networked autonomous air vehicles, IEEE Transactions on Control Systems Technology, 14, 5, 789-803 (2006) · doi:10.1109/TCST.2006.876902
[9] Jiang, J.; Yu, X., Fault-tolerant control systems: A comparative study between active and passive approaches, Annual Reviews in Control, 36, 1, 60-72 (2012) · doi:10.1016/j.arcontrol.2012.03.005
[10] Li, L.; Yao, L.; Jin, H.; Zhou, J., Fault diagnosis and fault-tolerant control based on Laplace transform for nonlinear networked control systems with random delay, International Journal of Robust and Nonlinear Control, 30, 3, 1223-1239 (2020) · Zbl 1447.93069 · doi:10.1002/rnc.v30.3
[11] Li, D.-Y.; Li, P.; Cai, W.-C.; Ma, X.-P.; Liu, B.; Dong, H.-H., Neural adaptive fault tolerant control for high speed trains considering actuation notches and antiskid constraints, IEEE Transactions on Intelligent Transportation Systems, 20, 5, 1706-1718 (2019) · doi:10.1109/TITS.6979
[12] Li, M.; Chen, Y., A wide-area dynamic damping controller based on robust \(####\) control for wide-area power systems with random delay and packet dropout, IEEE Transactions on Power Systems, 33, 4, 4026-4037 (2018) · doi:10.1109/TPWRS.2017.2782792
[13] Li, T.; Tang, X.; Ge, J.; Fei, S., Event-based fault-tolerant control for networked control systems applied to aircraft engine system, Information Sciences, 512, 7, 1063-1077 (2020) · Zbl 1461.93313 · doi:10.1016/j.ins.2019.10.039
[14] Liu, B.; Xia, Y., Fault detection and compensation for linear systems over networks with random delays and clock asynchronism, IEEE Transactions on Industrial Electronics, 58, 9, 4396-4406 (2011) · doi:10.1109/TIE.2010.2103533
[15] Li, T.; Zhang, W.-A.; Yu, L., Improved switched system approach to networked control systems with time-varying delays, IEEE Transactions on Control Systems Technology, 27, 6, 2711-2717 (2019) · doi:10.1109/TCST.87
[16] Li, Y.; Sun, K.; Tong, S., Adaptive fuzzy robust fault-tolerant optimal control for nonlinear large-scale systems, IEEE Transactions on Fuzzy Systems, 26, 5, 2899-2914 (2018) · doi:10.1109/TFUZZ.91
[17] Liu, L.; Li, X.; Liu, Y.-J.; Tong, S., Neural network based adaptive event trigger control for a class of electromagnetic suspension systems, Control Engineering Practice, 106, 6 (2021) · doi:10.1016/j.conengprac.2020.104675
[18] Liu, L.; Liu, Y.-J.; Chen, A.; Tong, S.; Chen, C. L. P., Integral barrier Lyapunov function-based adaptive control for switched nonlinear systems, Science China-information Sciences, 63, 3 (2020) · doi:10.1007/s11432-019-2714-7
[19] Matni, N., & Oishi, M. (2011). Stability of switched block upper-triangular linear systems with switching delay: Application to large distributed systems. American Control Conference, San Francisco, CA (pp. 1440-1445). IEEE.
[20] Pang, Z.-H.; Liu, G.-P.; Zhou, D.; Hou, F.; Sun, D., Two-channel false data injection attacks against output tracking control of networked systems, IEEE Transactions on Industrial Electronics, 63, 5, 3242-3251 (2016) · doi:10.1109/TIE.2016.2535119
[21] Pang, Z.-H.; Liu, G.-P.; Zhou, D.; Sun, D., Data-based predictive control for networked nonlinear systems with network-induced delay and packet dropout, IEEE Transactions on Industrial Electronics, 63, 2, 1249-1257 (2016) · doi:10.1109/TIE.2015.2497206
[22] Pang, Z.-H.; Liu, G.-P.; Zhou, D.; Sun, D., Networked predictive control of systems with communication constraints and cyber attacks (2019), Springer · Zbl 1432.93002
[23] Qiu, L.; Shi, Y.; Pan, J.; Xu, B.; Li, H., Robust control for a networked direct-drive linear motion control system: Design and experiments, Information Sciences, 370-371, 725-742 (2016) · Zbl 1429.93079 · doi:10.1016/j.ins.2016.02.022
[24] Rezaei, H.; Khosrowjerdi, M. J., A polytopic LPV approach to active fault tolerant control system design for three-phase induction motors, International Journal of Control, 90, 10, 2297-2315 (2017) · Zbl 1380.93094 · doi:10.1080/00207179.2016.1244730
[25] Shen, Q.; Yue, C.; Goh, C. H.; Wang, D., Active fault-tolerant control system design for spacecraft attitude maneuvers with actuator saturation and faults, IEEE Transactions on Industrial Electronics, 66, 5, 3763-3772 (2019) · doi:10.1109/TIE.2018.2854602
[26] Teixeira, A. M.; Araújo, J.; Sandberg, H.; Johansson, K. H., Distributed sensor and actuator reconfiguration for fault-tolerant networked control systems, IEEE Transactions on Control of Network Systems, 5, 4, 1517-1528 (2018) · Zbl 1515.93127 · doi:10.1109/TCNS.6509490
[27] Wang, H.; Zhou, B.; Lim, C.-C.; Lu, R.; Xue, A., \(####\) fault-tolerant control of networked control systems with actuator failures, IET Control Theory & Applications, 8, 12, 1127-1136 (2014) · doi:10.1049/cth2.v8.12
[28] Wang, X.; Fei, Z.; Wang, Z.; Liu, X., Event-triggered fault estimation and fault-tolerant control for networked control systems, Journal of The Franklin Institute-Engineering and Applied Mathematics, 356, 8, 4420-4441 (2019) · Zbl 1412.93087 · doi:10.1016/j.jfranklin.2019.04.003
[29] Wang, Y.-L.; Lim, C.-C.; Shi, P., Adaptively adjusted event-triggering mechanism on fault detection for networked control systems, IEEE Transactions on Cybernetics, 47, 8, 2299-2311 (2017) · doi:10.1109/TCYB.2016.2631903
[30] Wu, Y.; Lu, Y.; He, S.; Lu, R., Synchronization control for unreliable network systems in intelligent robots, IEEE/ASME Transactions on Mechatronics, 24, 6, 2641-2651 (2019) · doi:10.1109/TMECH.3516
[31] Yang, H.; Han, Q.-L.; Ge, X.; Ding, L.; Xu, Y.; Jiang, B.; Zhou, D., Fault-tolerant cooperative control of multiagent systems: A survey of trends and methodologies, IEEE Transactions on Industrial Informatics, 16, 1, 4-17 (2020) · doi:10.1109/TII.9424
[32] Zhang, L.; Gao, H.; Kaynak, O., Network-induced constraints in networked control systems - A survey, IEEE Transactions on Industrial Informatics, 9, 1, 403-416 (2013) · doi:10.1109/TII.2012.2219540
[33] Zhao, Y.-B.; Huang, T.; Kang, Y.; Xi, X., Stochastic stabilisation of wireless networked control systems with lossy multi-packet transmission, IET Control Theory & Applications, 13, 4, 594-601 (2019) · Zbl 1434.93110 · doi:10.1049/cth2.v13.4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.