×

Information theoretical statistical discrimination measures for electronic densities. (English) Zbl 1500.81085

Summary: Information theoretical measures are examined as methodologies for optimizing linear and non-linear parameters to obtain the best densities for particular classes of functions. We focus on the use of Gaussian type functions to represent the hydrogen atom, and examine combinations of these functions which have been used in the STO-\(n\)G basis sets. The densities obtained from these procedures are compared and contrasted to those obtained from energy optimization, and from least-squares fitting to the wave function and to the density, by evaluation of density expectation values and comparisons to their exact values. We show how densities obtained from the optimization of Kullback-Leibler (KL) measures yield better results in general, as compared to the ones obtained from energy optimization or least-squares fitting procedures. Furthermore, these types of densities are observed to provide exact results in the case of two expectation values, for all the studied classes of functions. The densities obtained from optimization of the cumulative residual KL measures, based on survival densities, provide the most accurate tail behaviour of the densities and hence the most accurate higher-order moments.

MSC:

81V45 Atomic physics
62B10 Statistical aspects of information-theoretic topics
94A15 Information theory (general)
94A17 Measures of information, entropy
28C20 Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.)
93E24 Least squares and related methods for stochastic control systems
37A10 Dynamical systems involving one-parameter continuous families of measure-preserving transformations
Full Text: DOI

References:

[1] Parr, RG; Yang, W., Density-Functional Theory of Atoms and Molecules (1994), New York: Oxford University Press, New York
[2] Bader, R., Atoms in Molecules. A Quantum Theory (1990), New York: Oxford University Press, New York
[3] Coppens, P., X-Ray Charge Densities and Chemical Bonding (1997), Oxford: International Union of Crystallography, Oxford University Press, New York, USA, Oxford · doi:10.1093/oso/9780195098235.001.0001
[4] A.K. Seghouane, S. Amari, The AIC criterion and symmetrizing the Kullback-Leibler divergence. IEEE Trans. Neural Netw. 18(1), 97-106 (2007). doi:10.1109/TNN.2006.882813
[5] O. Kosheleva, V. Kreinovich, Why deep learning methods use KL divergence instead of least squares: a possible pedagogical explanation. Math. Struct. Model. 46(2), 102-106 (2018). doi:10.25513/2222-8772.2018.2.102-106
[6] Carbó-Dorca, R., Molecular Similarity and Reactivity: From Quantum Chemical to Phenomenological Approaches (1995), Dordrecht: Springer, Dordrecht · doi:10.1007/978-94-015-8488-3
[7] Baratpour, S.; Rad, AH, Testing goodness-of-fit for exponential distribution based on cumulative residual entropy, Commun. Stat. Theory Methods, 41, 8, 1387-1396 (2012) · Zbl 1319.62095 · doi:10.1080/03610926.2010.542857
[8] Park, S.; Rao, M.; Shin, DW, On cumulative residual Kullback-Leibler information, Stat. Probab. Lett., 82, 2025-2032 (2012) · Zbl 1312.62012 · doi:10.1016/j.spl.2012.06.015
[9] Hehre, WJ; Stewart, RF; Pople, JA, Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals, J. Chem. Phys., 51, 6, 2657-2664 (1969) · doi:10.1063/1.1672392
[10] Stewart, RF, Small Gaussian expansions of Slater-type orbitals, J. Chem. Phys., 52, 1, 431-438 (1970) · doi:10.1063/1.1672702
[11] Wolfram Research, Inc., Mathematica Version 12.0 (2020), Champaign: Wolfram Research, Inc., Champaign
[12] Kullback, S.; Leibler, RA, On information and sufficiency, Ann. Math. Stat., 22, 1, 79-86 (1951) · Zbl 0042.38403 · doi:10.1214/aoms/1177729694
[13] Martín, AL; López-Rosa, S.; Angulo, JC; Antolín, J., Jensen-Shannon and Kullback-Leibler divergences as quantifiers of relativistic effects in neutral atoms, Chem. Phys. Lett., 635, 75-79 (2015) · doi:10.1016/j.cplett.2015.06.037
[14] Lamberti, PW; Majtey, AP; Borras, A.; Casas, M.; Plastino, A., Metric character of the quantum Jensen-Shannon divergence, Phys. Rev. A, 77 (2008) · doi:10.1103/PhysRevA.77.052311
[15] Laguna, HG; Salazar, SJC; Sagar, RP, Entropic Kullback-Leibler type distance measures for quantum distributions, Int. J. Quantum Chem., 119, 19 (2019) · doi:10.1002/qua.25984
[16] Salazar, SJC; Laguna, HG; Prasad, V.; Sagar, RP, Shannon-information entropy sum in the confined hydrogenic atom, Int. J. Quantum Chem., 120, 11 (2020) · doi:10.1002/qua.26188
[17] Bialynicki-Birula, I.; Mycielski, J., Uncertainty relations for information entropy in wave mechanics, J. Commun. Math. Phys., 44, 2, 129-132 (1975) · doi:10.1007/BF01608825
[18] Beckner, W., Inequalities in Fourier analysis, Ann. Math., 102, 1, 159-182 (1975) · Zbl 0338.42017 · doi:10.2307/1970980
[19] Gadre, S.; Sears, S.; Chakravorty, S.; Bendale, R., Some novel characteristics of atomic information entropies, Phys. Rev. A, 12, 5, 2602-2606 (1985) · doi:10.1103/PhysRevA.32.2602
[20] Nascimento, WS; Prudente, FV, Shannon entropy: a study of confined hydrogenic-like atoms, Chem. Phys. Lett., 691, 401-407 (2018) · doi:10.1016/j.cplett.2017.11.048
[21] A. Grassi, G. Lombardo, N. March, R. Pucci, 1/Z expansion, correlation energy, and Shannon entropy of heavy atoms in nonrelativistic limit. Int. J. Quantum Chem. 69(6), 721-726 (1998). doi:10.1002/(SICI)1097-461X(1998)69:63.0.CO;2-X
[22] Fuentealba, P.; Melin, J., Atomic spin-density polarization index and atomic spin-density information entropy distance, Int. J. Quantum Chem., 90, 334 (2002) · doi:10.1002/qua.994
[23] Q. Shi, S. Kais, Finite size scaling for the atomic Shannon-information entropy. J. Chem. Phys. 121(12), 5611-5617 (2004). doi:10.1063/1.1785773
[24] Atre, R.; Kumar, A.; Kumar, N.; Panigrahi, P., Quantum-information entropies of the eigenstates and the coherent state of the Pöschl-Teller potential, Phys. Rev. A, 69 (2004) · doi:10.1103/PhysRevA.69.052107
[25] Sen, K., Characteristic features of Shannon information entropy of confined atoms, J. Chem. Phys., 123 (2005) · doi:10.1063/1.2008212
[26] Chatzisavvas, K.; Moustakidis, C.; Panos, C., Information entropy, information distances, and complexity in atoms, J. Chem. Phys., 123 (2005) · doi:10.1063/1.2121610
[27] Huang, Z.; Kais, S., Entanglement as measure of electron-electron correlation in quantum chemistry calculations, Chem. Phys. Lett., 413, 1 (2005) · doi:10.1016/j.cplett.2005.07.045
[28] Luzanov, AV; Prezhdo, OV, High-order entropy measures and spin-free quantum entanglement for molecular problems, Mol. Phys., 105, 2879 (2007) · doi:10.1080/00268970701725039
[29] Pineda-Urbina, K.; Guerrero, RD; Reyes, A.; Gómez-Sandoval, Z.; Flores-Moreno, R., Shape entropy’s response to molecular ionization, J. Mol. Model., 19, 1677 (2013) · doi:10.1007/s00894-012-1725-4
[30] Nagy, Á., Shannon entropy density as a descriptor of Coulomb systems, Chem. Phys. Lett., 556, 29, 355-358 (2013) · doi:10.1016/j.cplett.2012.11.065
[31] Sun, G.; Dong, S.; Saad, N., Quantum information entropies for an asymmetric trigonometric Rosen-Morse potential, Ann. Phys., 525, 12, 934-943 (2013) · doi:10.1002/andp.201300089
[32] Fotue, AJ; Kenfack, SC; Tiotsup, M.; Issofa, N.; Wirngo, AV; Djemmo, MPT; Fotsin, H.; Fai, LC, Shannon entropy and decoherence of bound magnetopolaron in a modified cylindrical quantum dot, Mod. Phys. Lett. B, 29, 1550241 (2015) · doi:10.1142/S0217984915502413
[33] Lin, C.; Ho, Y., Shannon information entropy in position space for two-electron atomic systems, Chem. Phys. Lett., 633, 11-12, 261-264 (2015) · doi:10.1016/j.cplett.2015.05.029
[34] Mukerjee, N.; Roy, A., Quantum confinement in an asymmetric double-well potential through energy analysis and information entropic measure, Ann. Phys., 528, 5, 412-433 (2016) · doi:10.1002/andp.201500301
[35] Ghafourian, M.; Hassanabadi, H., Shannon information entropies for the three-dimensional Klein-Gordon problem with the Poschl-Teller potential, J. Korean Phys. Soc., 68, 11, 1267-1271 (2016) · doi:10.3938/jkps.68.126
[36] Najafizade, S.; Hassanabadi, H.; Zarrinkamar, S., Nonrelativistic Shannon information entropy for Kratzer potential, Chin. Phys. B, 25, 4, 040301 (2016) · doi:10.1088/1674-1056/25/4/04030
[37] Ghosal, A.; Mukherjee, N.; Roy, AK, Information entropic measures of a quantum harmonic oscillator in symmetric and asymmetric confinement within an impenetrable box, Ann. Phys. (Berl.), 528, 796 (2016) · doi:10.1002/andp.20160012
[38] Olendski, O., Theory of the Robin quantum wall in a linear potential. I. Energy spectrum, polarization and quantum-information measures, Ann. Phys. (Berl.), 528, 865 (2016) · Zbl 1357.81083 · doi:10.1002/andp.20160008
[39] Boumali, A.; Labidi, M., Shannon entropy and Fisher information of the one-dimensional Klein-Gordon oscillator with energy-dependent potential, Mod. Phys. Lett. A, 33, 6, 1850033 (2018) · doi:10.1142/S021773231850033
[40] C. Onate, M. Onyeaju, E. Ituen, A. Ikot, O. Ebomwonyi, J. Okoro, K. Dopamu, Eigensolutions, Shannon entropy and information energy for modified Tietz-Hua potential. Indian J. Phys. 92(4), 0974-9845 (2018). doi:10.1007/s12648-017-1124-x
[41] Flores-Gallegos, N., On the calculations of Shannon’s entropy in atoms and molecules I: the continuous case in position and momentum spaces, Chem. Phys. Lett., 720, 1-6 (2019) · doi:10.1016/j.cplett.2019.01.04
[42] López-Rosa, S.; Martín, A.; Antolín, J.; Angulo, J., Electron-pair entropic and complexity measures in atomic systems, Int. J. Quantum Chem., 119, 7, 25861 (2019) · doi:10.1002/qua.2586
[43] Martínez-Sánchez, M.; Vargas, R.; Garza, J., Shannon entropy for the hydrogen atom confined by four different potentials, Quantum Rep., 1, 208-218 (2019) · doi:10.3390/quantum102001
[44] Toranzo, I.; Puertas-Centeno, D.; Sobrino, N.; Dehesa, J., Analytical Shannon information entropies for all discrete multidimensional hydrogenic states, Int. J. Quantum Chem., 120, 2, 26077 (2020) · doi:10.1002/qua.2607
[45] Ludeña, E.; Torres, F.; Becerra, M.; Rincón, L.; Liu, S., Shannon entropy and Fisher information from a non-Born-Oppenheimer perspective, J. Phys. Chem. A, 124, 2, 386-394 (2020) · doi:10.1021/acs.jpca.9b1050
[46] Nasser, I.; Abdel-Hady, A., Fisher information and Shannon entropy calculations for two-electron systems, Can. J. Phys., 98, 8, 784-789 (2020) · doi:10.1139/cjp-2019-039
[47] Subhasish, S.; Jobin, J., Shannon entropy as a predictor of avoided crossing in confined atoms, Int. J. Quantum Chem., 120, 22, 26374 (2020) · doi:10.1002/qua.2637
[48] Edet, C.; Ikot, A., Shannon information entropy in the presence of magnetic and Aharanov-Bohm (AB) fields, Eur. Phys. J. Plus, 136, 4, 2190-5444 (2021) · doi:10.1140/epjp/s13360-021-01438-
[49] Cruz, E.; Aquino, N.; Prasad, V., Localization-delocalization of a particle in a quantum corral in presence of a constant magnetic field, Eur. Phys. J. D, 75, 3, 1434-6079 (2021) · doi:10.1140/epjd/s10053-021-00119-
[50] Ghiringhelli, LM; Hamilton, IP; Delle Site, L., Interacting electrons, spin statistics, and information theory, J. Chem. Phys., 132, 014106 (2010) · doi:10.1063/1.328095
[51] Delle Site, L., Shannon entropy and many-electron correlations: theoretical concepts, numerical results, and Collins conjecture, Int. J. Quantum Chem., 115, 19, 1396-1404 (2015) · doi:10.1002/qua.2482
[52] Gerolin, A.; Grossi, J.; Gori-Giorgi, P., Kinetic correlation functionals from the entropic regularization of the strictly correlated electrons problem, J. Chem. Theory Comput., 16, 1, 488-498 (2020) · doi:10.1021/acs.jctc.9b01133
[53] Steiner, E., Charge densities in atoms, J. Chem. Phys., 39, 9, 2365-2366 (1963) · doi:10.1063/1.1701443
[54] Kato, T., On the eigenfunctions of many-particle systems in quantum mechanics, Commun. Pure Appl. Math., 10, 2, 151-177 (1957) · Zbl 0077.20904 · doi:10.1002/cpa.3160100201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.