×

Quasi-Toeplitz trigonometric transform splitting methods for spatial fractional diffusion equations. (English) Zbl 1500.65047

Summary: The random walk model describing the super-diffusion competition phenomenon of particles can derive the spatial fractional diffusion equation. For irregular diffusion and super-diffusion phenomena, the use of such equation can obtain more accurate and realistic results, so it has a wide application background in practice. The implicit finite-difference method derived from the shifted Grünwald scheme is used to discretize the spatial fractional diffusion equation. The coefficient matrix of discrete system is in the form of the sum of a diagonal matrix and a Toeplitz matrix. In this paper, a preconditioner is constructed, which transforms the coefficient matrix into the form of an identity matrix plus a diagonal matrix multiplied by Toeplitz matrix. On this basis, a new quasi-Toeplitz trigonometric transform splitting iteration format (abbreviated as QTTTS method) is proposed. We theoretically verify the unconditional convergence of the new method, and obtain the effective optimal form of the iteration parameter. Finally, numerical simulation experiments also demonstrate the accurateness and efficiency of the new method.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N06 Finite difference methods for boundary value problems involving PDEs
15B05 Toeplitz, Cauchy, and related matrices
15A18 Eigenvalues, singular values, and eigenvectors
65F08 Preconditioners for iterative methods
65F10 Iterative numerical methods for linear systems
60K50 Anomalous diffusion models (subdiffusion, superdiffusion, continuous-time random walks, etc.)
26A33 Fractional derivatives and integrals
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] Oldham, KB; Spanier, J., The Fractional Calculus: Theorey and Applicatons of Differentiation and Integration to Arbitrary Order (1974), New York: Academic Press, New York · Zbl 0292.26011
[2] Podlubny, I., Fractional-order systems and PI^λD^μ-controllers, IEEE Trans. Autom. Control, 44, 1, 208-214 (1999) · Zbl 1056.93542 · doi:10.1109/9.739144
[3] Shekarforoush, H., Zerubia, J., Berthod, M., et al.: Denoising by extracting fractional order singularities. International Conference on Acoustics Speech and Signal Processing, 2889-2892 (1998)
[4] Mathieu, B.; Melchior, P.; Oustaloup, A., Fractional differentiation for edge detection, Signal Process., 83, 11, 2421-2432 (2003) · Zbl 1145.94309 · doi:10.1016/S0165-1684(03)00194-4
[5] Pires, EJ; Machado, JA; Oliveira, PB, Fractional order dynamics in a GA planner, Signal Process., 83, 11, 2377-2386 (2003) · Zbl 1145.94371 · doi:10.1016/S0165-1684(03)00190-7
[6] Deng, W-H; Li, C-P, Synchronization of chaotic fractional Chen system, J. Phys. Soc. Jpn., 74, 6, 1645-1648 (2005) · Zbl 1080.34537 · doi:10.1143/JPSJ.74.1645
[7] Wu, X-J; Li, J.; Chen, G-R, Chaos in the fractional order unified system and its synchronization, J. Franklin Inst.-Eng. Appl. Math., 345, 4, 392-401 (2008) · Zbl 1166.34030 · doi:10.1016/j.jfranklin.2007.11.003
[8] Oldham, KB, Semiintegral electroanalysis. Analog implementation, Anal. Chem., 45, 1, 39-47 (1973) · doi:10.1021/ac60323a005
[9] Darling, RM; Newman, J., On the short-time behavior of porous intercalation electrodes, J. Electrochem. Soc., 144, 9, 3057-3063 (1997) · doi:10.1149/1.1837958
[10] Brenke, WC, An application of Abel’s integral equation, Am. Math. Monthly, 29, 2, 58-60 (1992) · JFM 48.0491.03 · doi:10.1080/00029890.1922.11986102
[11] Mainardi, F., Luchko, Y., Pagnini, G., et al.: The fundamental solution of the space-time fractional diffusion equation. arXiv: Statistical Mechanics (2007) · Zbl 1054.35156
[12] Meerschaert, MM; Tadjeran, C., Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 172, 1, 65-77 (2004) · Zbl 1126.76346 · doi:10.1016/j.cam.2004.01.033
[13] Zhuang, P-H; Liu, F-W; Anh, V., New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation, SIAM J. Numer. Anal., 46, 2, 1079-1095 (2008) · Zbl 1173.26006 · doi:10.1137/060673114
[14] Momani, S.; Odibat, Z., Numerical comparison of methods for solving linear differential equations of fractional order, Chaos Solitons Fractals, 31, 5, 1248-1255 (2007) · Zbl 1137.65450 · doi:10.1016/j.chaos.2005.10.068
[15] Liu, F-W; Zhuang, P-H; Burrage, K., Numerical methods and analysis for a class of fractional advection-dispersion models, Comput. Math. Appl., 64, 10, 2990-3007 (2012) · Zbl 1268.65124 · doi:10.1016/j.camwa.2012.01.020
[16] Ng, MK, Circulant and skew-circulant splitting methods for Toeplitz systems, J. Comput. Appl. Math., 159, 1, 101-108 (2003) · Zbl 1033.65014 · doi:10.1016/S0377-0427(03)00562-4
[17] Akhondi, N., Toutounian, F.: Accelerated circulant and skew circulant splitting methods for Hermitian positive definite Toeplitz systems. Adv. Numer. Anal. 1-17 (2012) · Zbl 1342.65107
[18] Liu, Z.; Wu, N.; Qin, X., Trigonometric transform splitting methods for real symmetric Toeplitz systems, Comput. Math. Appl., 75, 8, 2782-2794 (2018) · Zbl 1415.65078 · doi:10.1016/j.camwa.2018.01.008
[19] Ng, MK; Pan, J-Y, Approximate inverse circulant-plus-diagonal preconditioners for Toeplitz-plus-diagonal matrices, SIAM J. Sci. Comput., 32, 3, 1442-1464 (2010) · Zbl 1222.65028 · doi:10.1137/080720280
[20] Wang, C-J; Li, H-Y; Zhao, D., Preconditioning Toeplitz-plus-diagonal linear systems using the Sherman-Morrison-Woodbury formula, J. Comput. Appl. Math., 309, 312-319 (2017) · Zbl 1455.65046 · doi:10.1016/j.cam.2016.06.030
[21] Bai, Z-Z; Lu, K-Y; Pan, J-Y, Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations, Numer. Linear Algebra Appl., 24, 4, 2093 (2017) · Zbl 1463.65040 · doi:10.1002/nla.2093
[22] Lu, K-Y, Diagonal and circulant or skew-circulant splitting preconditioners for spatial fractional diffusion equations, Comput. Appl. Math., 37, 4, 4196-4218 (2018) · Zbl 1402.65018 · doi:10.1007/s40314-017-0570-6
[23] Dai, P-F; Wu, Q-B; Zhu, S-F, Quasi-Toeplitz splitting iteration methods for unsteady space-ractional diffusion equations, Numer. Methods Partial Differ. Equ., 35, 2, 699-715 (2019) · Zbl 1418.65097 · doi:10.1002/num.22320
[24] Shao, X-H; Zhang, Z-D; Shen, H-L, A generalization of trigonometric transform splitting methods for spatial fractional diffusion equations, Comput. Math. Appl., 79, 6, 1845-1856 (2020) · Zbl 1443.65140 · doi:10.1016/j.camwa.2019.10.003
[25] Chan, RH; Jin, X-Q, An Introduction to Iterative Toeplitz Solvers (2007), Philadelphia: Society for Industrial and Applied Mathematics (SIAM), Philadelphia · Zbl 1146.65028 · doi:10.1137/1.9780898718850
[26] Varga, RS, Matrix Iterative Analysis (1962), Englewood Cliffs: Prentice Hall, Englewood Cliffs · Zbl 0133.08602
[27] Varga, R.S.: Geršgorin and His Circles, Springer Series in Computational Mathematics (2004) · Zbl 1057.15023
[28] Heinig, G.; Rost, K., Representations of Toeplitz-plus-Hankel matrices using trigonometric transformations with application to fast matrix-vector multiplication, Linear Algebra Appl., 275, 225-248 (1998) · Zbl 0935.65040 · doi:10.1016/S0024-3795(97)10024-6
[29] Huckle, T., Iterative methods for ill-conditioned Toeplitz matrices, Calcolo, 33, 3, 177-190 (1996) · Zbl 0904.65036 · doi:10.1007/BF02575999
[30] Bai, Z-Z, On the convergence of additive and multiplicative splitting iterations for systems of linear equations, J. Comput. Appl. Math., 154, 1, 195-214 (2003) · Zbl 1022.65035 · doi:10.1016/S0377-0427(02)00822-1
[31] Bai, Z-Z; Golub, GH; Ng, MK, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24, 3, 603-626 (2002) · Zbl 1036.65032 · doi:10.1137/S0895479801395458
[32] Axelsson, O., Iterative Solution Methods (1994), Cambridge: Cambridge University Press, Cambridge · Zbl 0845.65011 · doi:10.1017/CBO9780511624100
[33] Deng, W-H; Li, B-Y; Tian, W-Y, Boundary problems for the fractional and tempered fractional operators, Multiscale Model. Simul., 16, 1, 125-149 (2018) · Zbl 1391.60104 · doi:10.1137/17M1116222
[34] Bai, Z-Z; Lu, K-Y, Fast matrix splitting preconditioners for higher dimensional spatial fractional diffusion equations, J. Comput. Phys., 404, 109117 (2020) · Zbl 1453.65062 · doi:10.1016/j.jcp.2019.109117
[35] Kelly, JF; Sankaranarayanan, H.; Meerschaert, MM, Boundary conditions for two-sided fractional diffusion, J. Comput. Phys., 376, 1089-1107 (2018) · Zbl 1416.35296 · doi:10.1016/j.jcp.2018.10.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.