×

Surface group representations in \(\mathrm{SL}_2(\mathbb{C})\) with finite mapping class orbits. (English) Zbl 1500.57020

The \(\mathrm{SL}_2(\mathbb C)\)-character variety of a group \(\Gamma\) is defined as the (invariant-theoretic) quotient \(X(\Gamma) = \mathrm{Hom}(\Gamma, \mathrm{SL}_2(\mathbb C)) /\! / \Gamma\). This paper concerns the case \(\Gamma = \pi_1 (\Sigma)\), where \(\Sigma\) denotes a closed connected surface with finitely many punctures. The first result (Thm. A) states that, provided the genus \(g\) of \(\Sigma\) is at least \(2\), a semisimple representation \(\pi_1(\Sigma) \to \mathrm{SL}_2(\mathbb C)\) has finite orbit in the character variety \(X(\pi_1(\Sigma))\) with respect to the action of the mapping class group \(\mathrm{Mod}(\Sigma)\) of \(\Sigma\) if and only if it is finite, which means it has finite image. A second result (Thm. B) concerns the case of genus \(1\). In this case, a semisimple representation \(\rho\colon \pi_1(\Sigma) \to \mathrm{SL}_2(\mathbb C)\) has finite orbit in the character variety \(X(\pi_1(\Sigma))\) if and only if it is finite or special dihedral, which means it factors through the infinite dihedral group \(D_{\infty} \subset \mathrm{GL}_2(\mathbb C)\) comprising the diagonal and antidiagonal matrices in \(\mathrm{SL}_2(\mathbb C)\), and there is a non-seperating simple closed curve \(a\) such that \(\rho\) is diagonal on the complement of \(a\). A third result (Thm. C) characterizes representations \(\rho\) whose orbit under the action of \(\mathrm{Mod}(\Sigma)\) is bounded (i.e., its closure with respect to the Euclidean topology is compact) as those that are unitary up to conjugacy or, if \(g =1\), special dihedral up to conjugacy.
The main ingredients in the proof of Theorems A and B are Kronecker’s theorem on algebraic integers, clever geometric arguments, and, most importantly, an earlier theorem of the last named author and collaborators stating that a representation \(\pi_1(\Sigma) \to \mathrm{SL}_2(\mathbb C)\) whose monodromy along all simple closed loops is finite, is finite itself [A. Patel et al., Adv. Math. 386, Article ID 107800, 33 p. (2021; Zbl 1467.14087)]. Theorem C likewise relies on a result from the same paper stating that a representation \(\pi_1(\Sigma) \to\mathrm{SL}_2(\mathbb C)\) whose monodromy along all simple closed loops is elliptic or central, is unitarizable.

MSC:

57M50 General geometric structures on low-dimensional manifolds
57M05 Fundamental group, presentations, free differential calculus
20E36 Automorphisms of infinite groups
20F29 Representations of groups as automorphism groups of algebraic systems

Citations:

Zbl 1467.14087

References:

[1] ; Biswas, Indranil; Koberda, Thomas; Mj, Mahan; Santharoubane, Ramanujan, Representations of surface groups with finite mapping class group orbits, New York J. Math., 24, 241 (2018) · Zbl 1394.57013
[2] 10.1515/CRELLE.2006.059 · Zbl 1112.34072 · doi:10.1515/CRELLE.2006.059
[3] 10.1016/j.crma.2015.12.006 · Zbl 1378.11043 · doi:10.1016/j.crma.2015.12.006
[4] 10.5802/aif.2512 · Zbl 1204.34123 · doi:10.5802/aif.2512
[5] 10.1007/s10711-014-9984-0 · Zbl 1334.57003 · doi:10.1007/s10711-014-9984-0
[6] 10.1007/s00208-016-1397-y · Zbl 1360.14028 · doi:10.1007/s00208-016-1397-y
[7] 10.1017/S1474748019000562 · Zbl 1542.20158 · doi:10.1017/S1474748019000562
[8] 10.1112/plms/s3-55.1.127 · Zbl 0634.53046 · doi:10.1112/plms/s3-55.1.127
[9] 10.1007/PL00005790 · Zbl 0960.34075 · doi:10.1007/PL00005790
[10] 10.1007/BF01449199 · JFM 38.0362.01 · doi:10.1007/BF01449199
[11] 10.2307/121044 · Zbl 0977.30028 · doi:10.2307/121044
[12] 10.4171/055-1/16 · Zbl 1175.30043 · doi:10.4171/055-1/16
[13] ; Hitchin, N. J., Poncelet polygons and the Painlevé equations, Geometry and analysis, 151 (1995) · Zbl 0893.32018
[14] 10.1002/cpa.3160250602 · Zbl 1184.20009 · doi:10.1002/cpa.3160250602
[15] ; Iwasaki, Katsunori, A modular group action on cubic surfaces and the monodromy of the Painlevé VI equation, Proc. Japan Acad. Ser. A Math. Sci., 78, 7, 131 (2002) · Zbl 1058.34125
[16] 10.1007/s00222-016-0652-x · Zbl 1400.57020 · doi:10.1007/s00222-016-0652-x
[17] 10.1007/BF01388597 · Zbl 0554.10009 · doi:10.1007/BF01388597
[18] 10.1016/j.geomphys.2014.05.010 · Zbl 1307.34135 · doi:10.1016/j.geomphys.2014.05.010
[19] 10.2307/1971082 · Zbl 0583.57005 · doi:10.2307/1971082
[20] 10.1016/j.aim.2021.107800 · Zbl 1467.14087 · doi:10.1016/j.aim.2021.107800
[21] 10.1090/S0002-9947-02-02961-6 · Zbl 1089.53059 · doi:10.1090/S0002-9947-02-02961-6
[22] 10.1016/S0040-9383(98)00062-7 · Zbl 0958.57011 · doi:10.1016/S0040-9383(98)00062-7
[23] 10.1007/978-3-642-55750-7 · doi:10.1007/978-3-642-55750-7
[24] ; Saito, Kyoji, Character variety of representations of a finitely generated group in SL2, Topology and Teichmüller spaces, 253 (1996) · Zbl 0934.20034
[25] 10.1007/BF02698895 · Zbl 0891.14006 · doi:10.1007/BF02698895
[26] 10.1353/ajm.2008.0010 · Zbl 1158.57003 · doi:10.1353/ajm.2008.0010
[27] 10.24033/asens.331 · JFM 21.0314.01 · doi:10.24033/asens.331
[28] 10.1112/s0010437x20007241 · Zbl 1446.14004 · doi:10.1112/s0010437x20007241
[29] 10.1007/s11856-020-2085-x · Zbl 1464.14017 · doi:10.1007/s11856-020-2085-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.