×

Smooth dependence of fixed points of Hamiltonians. (English) Zbl 1500.37041

Summary: We consider the Lie semigroup of symplectic Hamiltonians acting on the open convex cone of positive definite matrices via linear fractional transformations. Each member of its interior contracts strictly the invariant Finsler metric, the Thompson metric on the cone, and has a unique positive definite fixed point. We show that the fixed point map is smooth. As applications, we obtain the smooth dependence of the solutions of discrete algebraic Riccati equations and a family of smooth maps from the Siegel upper half-plane over the cone of positive definite matrices into its imaginary part.

MSC:

37J37 Relations of finite-dimensional Hamiltonian and Lagrangian systems with Lie algebras and other algebraic structures
37J38 Relations of finite-dimensional Hamiltonian and Lagrangian systems with algebraic geometry, complex analysis, special functions
37J39 Relations of finite-dimensional Hamiltonian and Lagrangian systems with topology, geometry and differential geometry (symplectic geometry, Poisson geometry, etc.)
15A23 Factorization of matrices
Full Text: DOI

References:

[1] Ando, T., Topics on Operator Inequalities, Lecture Note (1978), Sapporo · Zbl 0388.47024
[2] Anderson, W.; Kleindorfer, G.; Kleindorfer, P.; Woodroofe, M., Consistent estimates of the parameters of a linear system, Ann. Math. Stat., 40, 2064-2075 (1969) · Zbl 0213.20703
[3] Bertram, W., Un theoreme de Liouville pour les algebres de Jordan, Bull. Soc. Math. Fr., 124, 299-327 (1996) · Zbl 0926.17020
[4] Bhatia, R., Positive Definite Matrices, Princeton Series in Applied Mathematics (2007), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 1133.15017
[5] Birkhoff, G., Extensions of Jentzch’s theorem, Trans. Am. Math. Soc., 85, 219-227 (1957) · Zbl 0079.13502
[6] Bougerol, P., Kalman filtering with random coefficients and contractions, SIAM J. Control Optim., 31, 942-959 (1993) · Zbl 0785.93040
[7] Chu, M.; Buono, N.; Diele, F.; Politi, T.; Ragni, S., On the semigroup of standard symplectic matrices and its applications, Linear Algebra Appl., 389, 215-225 (2004) · Zbl 1065.15022
[8] Chu, E.; Fan, H.; Lin, W.; Wang, C., A structure-preserving doubling algorithm for periodic discrete-time algebraic Riccati equations, Int. J. Control, 77, 767-788 (2004) · Zbl 1061.93061
[9] Corach, G.; Porta, H.; Recht, L., The geometry of the space of selfadjoint invertible elements in a \(C^\ast \)-algebra, Integral Equ. Oper. Theory, 16, 333-359 (1993) · Zbl 0786.58006
[10] Corach, G.; Porta, H.; Recht, L., Convexity of the geodesic distance on spaces of positive operators, Ill. J. Math., 38, 87-94 (1994) · Zbl 0802.53012
[11] Lee, H.; Lim, Y., Invariant metrics, contractions and nonlinear matrix equations, Nonlinearity, 21, 857-878 (2008) · Zbl 1153.15020
[12] Gowda, M.; Parthasarathy, T., Complementarity forms of theorems of Lyapunov and Stein, and related results, Linear Algebra Appl., 320, 131-144 (2000) · Zbl 0965.15019
[13] Lawson, J.; Lim, Y., Lie semigroups with triple decompositions, Pac. J. Math., 194, 393-412 (2000) · Zbl 1012.22009
[14] Lawson, J.; Lim, Y., The geometric mean, matrices, metrics, and more, Am. Math. Mon., 108, 797-812 (2001) · Zbl 1040.15016
[15] Lawson, J.; Lim, Y., The symplectic semigroup and Riccati differential equations, J. Dyn. Control Syst., 12, 49-77 (2006) · Zbl 1118.49029
[16] Lawson, J.; Lim, Y., A Birkhoff contraction formula with applications to Riccati equations, SIAM J. Control Optim., 46, 930-951 (2007) · Zbl 1357.49132
[17] Lawson, J.; Lim, Y., A Lipschitz constant formula for vector addition in cones with applications to Stein-like equations, Positivity, 16, 81-95 (2012) · Zbl 1263.46021
[18] Lim, Y., On the semigroup of Q-monotone symplectic operators, Semigroup Forum, 60, 385-395 (2000) · Zbl 0977.47030
[19] Lim, Y., Hamiltonian actions on the cone of positive definite matrices, Linear Algebra Appl., 460, 1-16 (2014) · Zbl 1305.22006
[20] Liverani, C., Decay of correlations, Ann. Math., 142, 239-301 (2004) · Zbl 0871.58059
[21] Liverani, C.; Wojtkowski, M., Generalization of the Hilbert metric to the space of positive definite matrices, Pac. J. Math., 166, 339-356 (1994) · Zbl 0824.53019
[22] Liverani, C.; Wojtkowski, M., Ergodicity in Hamiltonian systems, (Dynam. Report. Expositions Dynam. Systems (N.S.) (1995), Springer: Springer Berlin), 130-202 · Zbl 0824.58033
[23] Neeb, K.-H., A Cartan-Hadamard theorem for Banach-Finsler manifolds, Geom. Dedic., 95, 115-156 (2002) · Zbl 1027.58003
[24] Nussbaum, R. D., Hilbert’s Projective Metric and Iterated Nonlinear Maps, Memoirs of Amer. Math. Soc., vol. 391 (1988) · Zbl 0666.47028
[25] Nussbaum, R. D., Finsler structures for the part metric and Hilbert’s projective metric and applications to ordinary differential equations, Differ. Integral Equ., 7, 1649-1707 (1994) · Zbl 0844.58010
[26] Schneider, H., Positive operators and an inertia theorem, Numer. Math., 7, 11-17 (1965) · Zbl 0158.28003
[27] Wojtkowski, M., Invariant families of cones and Lyapunov exponents, Ergod. Theory Dyn. Syst., 5, 145-161 (1985) · Zbl 0578.58033
[28] Wojtkowski, M., Measure theoretic entropy of the system of hard spheres, Ergod. Theory Dyn. Syst., 8, 133-153 (1986) · Zbl 0662.58029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.