×

Locality and general vacua in quantum field theory. (English) Zbl 1499.81014

Summary: We extend the framework of general boundary quantum field theory (GBQFT) to achieve a fully local description of realistic quantum field theories. This requires the quantization of non-Kähler polarizations which occur generically on timelike hypersurfaces in Lorentzian spacetimes as has been shown recently. We achieve this in two ways: On the one hand we replace Hilbert space states by observables localized on hypersurfaces, in the spirit of algebraic quantum field theory. On the other hand we apply the GNS construction to twisted star-structures to obtain Hilbert spaces, motivated by the notion of reflection positivity of the Euclidean approach to quantum field theory. As one consequence, the well-known representation of a vacuum state in terms of a sea of particle pairs in the Hilbert space of another vacuum admits a vast generalization to non-Kähler vacua, particularly relevant on timelike hypersurfaces.

MSC:

81P16 Quantum state spaces, operational and probabilistic concepts
81S10 Geometry and quantization, symplectic methods
81S40 Path integrals in quantum mechanics
81T20 Quantum field theory on curved space or space-time backgrounds
81T70 Quantization in field theory; cohomological methods

References:

[1] Atiyah, Michael, Topological quantum field theories, Institut des Hautes \'Etudes Scientifiques. Publications Math\'ematiques, 68, 175-186, (1988) · Zbl 0692.53053 · doi:10.1007/BF02698547
[2] Barrett, John, Quantum gravity as topological quantum field theory, Journal of Mathematical Physics, 36, 11, 6161-6179, (1995) · Zbl 0852.58088 · doi:10.1063/1.531239
[3] Birrell, N. D. and Davies, P. C. W., Quantum fields in curved space, Cambridge Monographs on Mathematical Physics, 7, ix+340, (1982), Cambridge University Press, Cambridge – New York · Zbl 0476.53017
[4] Cattaneo, Alberto S. and Mnev, Pavel, Wave relations, Communications in Mathematical Physics, 332, 3, 1083-1111, (2014) · Zbl 1300.53069 · doi:10.1007/s00220-014-2130-x
[5] Colosi, Daniele, General boundary quantum field theory in de {S}itter spacetime
[6] Colosi, Daniele and Oeckl, Robert, {\(S\)}-matrix at spatial infinity, Physics Letters. B. Particle Physics, Nuclear Physics and Cosmology, 665, 4, 310-313, (2008) · Zbl 1328.81218 · doi:10.1016/j.physletb.2008.06.011
[7] Colosi, Daniele and Oeckl, Robert, Spatially asymptotic {\(S\)}-matrix from general boundary formulation, Physical Review D, 78, 2, 025020, 22 pages, (2008) · doi:10.1103/physrevd.78.025020
[8] Colosi, Daniele and Oeckl, Robert, The vacuum as a {L}agrangian subspace, Physical Review D, 100, 4, 045018, 34 pages, (2019) · doi:10.1103/physrevd.100.045018
[9] Colosi, Daniele and R\"atzel, Dennis, The {U}nruh effect in general boundary quantum field theory, SIGMA. Symmetry, Integrability and Geometry. Methods and Applications, 9, 019, 22 pages, (2013) · Zbl 1269.81092 · doi:10.3842/SIGMA.2013.019
[10] Crane, Louis, Topological field theory as the key to quantum gravity, Knots and Quantum Gravity ({R}iverside, {CA}, 1993), Oxford Lecture Ser. Math. Appl., 1, 121-132, (1994), Oxford University Press, New York · Zbl 0829.58049
[11] DeWitt, Bryce S., Quantum field theory in curved spacetime, Physics Reports. A Review Section of Physics Letters, 19, 6, 295-357, (1975) · doi:10.1016/0370-1573(75)90051-4
[12] Dohse, Max and Oeckl, Robert, Complex structures for an {\(S\)}-matrix of {K}lein–{G}ordon theory on {A}d{S} spacetimes, Classical and Quantum Gravity, 32, 10, 105007, 36 pages, (2015) · Zbl 1328.83021 · doi:10.1088/0264-9381/32/10/105007
[13] Donoghue, J. F. and Holstein, B. R., Low energy theorems of quantum gravity from effective field theory, Journal of Physics G: Nuclear and Particle Physics, 42, 10, 103102, 45 pages, (2015) · doi:10.1088/0954-3899/42/10/103102
[14] D\'{\i}az-Mar\'{\i}n, Homero G., Dirichlet to {N}eumann operator for abelian {Y}ang–{M}ills gauge fields, International Journal of Geometric Methods in Modern Physics, 14, 11, 1750153, 25 pages, (2017) · Zbl 1385.58011 · doi:10.1142/S0219887817501535
[15] D\'{\i}az-Mar\'{\i}n, Homero G. and Oeckl, Robert, Quantum abelian {Y}ang–{M}ills theory on {R}iemannian manifolds with boundary, SIGMA. Symmetry, Integrability and Geometry. Methods and Applications, 14, 105, 31 pages, (2018) · Zbl 1454.81142 · doi:10.3842/SIGMA.2018.105
[16] Feynman, R. P., Space-time approach to non-relativistic quantum mechanics, Reviews of Modern Physics, 20, 367-387, (1948) · Zbl 1371.81126 · doi:10.1103/revmodphys.20.367
[17] Fulling, S. A., Nonuniqueness of canonical field quantization in {R}iemannian space-time, Physical Review D, 7, 10, 2850-2862, (1973) · doi:10.1103/PhysRevD.7.2850
[18] Gerlach, Ulrich H., Minkowski {B}essel modes, Physical Review. D. Particles and Fields. Third Series, 38, 2, 514-521, (1988) · doi:10.1103/PhysRevD.38.514
[19] Groenewold, H. J., On the principles of elementary quantum mechanics, Physica, 12, 405-460, (1946) · Zbl 0060.45002 · doi:10.1016/S0031-8914(46)80059-4
[20] Haag, Rudolf, Local quantum physics. Fields, particles, algebras, Texts and Monographs in Physics, xiv+356, (1992), Springer-Verlag, Berlin · Zbl 0777.46037 · doi:10.1007/978-3-642-97306-2
[21] Haag, Rudolf and Kastler, Daniel, An algebraic approach to quantum field theory, Journal of Mathematical Physics, 5, 848-861, (1964) · Zbl 0139.46003 · doi:10.1063/1.1704187
[22] Itzykson, Claude and Zuber, Jean Bernard, Quantum field theory, International Series in Pure and Applied Physics, xxii+705, (1980), McGraw-Hill International Book Co., New York
[23] Jackiw, R., Analysis of infinite-dimensional manifolds – {S}chr\"odinger representation for quantized fields, Field Theory and Particle Physics ({C}ampos do {J}ord\~{a}o, 1989), 78-143, (1990), World Sci. Publ., River Edge, NJ
[24] Kay, Bernard S., The double-wedge algebra for quantum fields on {S}chwarzschild and {M}inkowski spacetimes, Communications in Mathematical Physics, 100, 1, 57-81, (1985) · Zbl 0578.46062 · doi:10.1007/BF01212687
[25] Lehmann, H. and Symanzik, K. and Zimmermann, W., Zur {F}ormulierung quantisierter {F}eldtheorien, Il Nuovo Cimento. Serie Decima, 1, 205-225, (1955) · Zbl 0066.44006 · doi:10.1007/BF02731765
[26] Moyal, J. E., Quantum mechanics as a statistical theory, Proceedings of the Cambridge Philosophical Society, 45, 99-124, (1949) · Zbl 0031.33601 · doi:10.1017/S0305004100000487
[27] Narozhny, N. B. and Fedotov, A. M. and Karnakov, B. M. and Mur, V. D. and Belinskii, V. A., Reply to “Comment on ‘Boundary conditions in the Unruh problem”, Physical Review. D. Third Series, 70, 4, 048702, 6 pages, (2004) · doi:10.1103/PhysRevD.70.048702
[28] Nelson, Edward, Construction of quantum fields from {M}arkoff fields, 12, 97-112, (1973) · Zbl 0252.60053 · doi:10.1016/0022-1236(73)90091-8
[29] Oeckl, Robert, Schr\"odinger’s cat and the clock: lessons for quantum gravity, Classical and Quantum Gravity, 20, 24, 5371-5380, (2003) · Zbl 1170.83383 · doi:10.1088/0264-9381/20/24/009
[30] Oeckl, Robert, States on timelike hypersurfaces in quantum field theory, Physics Letters. B. Particle Physics, Nuclear Physics and Cosmology, 622, 1-2, 172-177, (2005) · Zbl 1247.53100 · doi:10.1016/j.physletb.2005.06.078
[31] Oeckl, Robert, General boundary quantum field theory: timelike hypersurfaces in the {K}lein–{G}ordon theory, Physical Review. D. Third Series, 73, 6, 065017, 13 pages, (2006) · doi:10.1103/PhysRevD.73.065017
[32] Oeckl, Robert, General boundary quantum field theory: foundations and probability interpretation, Advances in Theoretical and Mathematical Physics, 12, 2, 319-352, (2008) · Zbl 1210.81039 · doi:10.4310/ATMP.2008.v12.n2.a3
[33] Oeckl, Robert, Two-dimensional quantum {Y}ang–{M}ills theory with corners, Journal of Physics. A. Mathematical and Theoretical, 41, 13, 135401, 20 pages, (2008) · Zbl 1138.81036 · doi:10.1088/1751-8113/41/13/135401
[34] Oeckl, Robert, Affine holomorphic quantization, Journal of Geometry and Physics, 62, 6, 1373-1396, (2012) · Zbl 1245.81287 · doi:10.1016/j.geomphys.2012.02.001
[35] Oeckl, Robert, Holomorphic quantization of linear field theory in the general boundary formulation, SIGMA. Symmetry, Integrability and Geometry. Methods and Applications, 8, 050, 31 pages, (2012) · Zbl 1285.81042 · doi:10.3842/SIGMA.2012.050
[36] Oeckl, Robert, Observables in the general boundary formulation, Quantum Field Theory and Gravity, 137-156, (2012), Birkh\"auser/Springer Basel AG, Basel · Zbl 1246.81019 · doi:10.1007/978-3-0348-0043-3_8
[37] Oeckl, Robert, Reverse engineering quantum field theory, Quantum Theory: Reconsideration of Foundations 6 (V\"axj\"o, 2012), AIP Conf. Proc., 1508, 428-432, (2012), American Institute of Physics, Melville · doi:10.1063/1.4773160
[38] Oeckl, Robert, The {S}chr\"odinger representation and its relation to the holomorphic representation in linear and affine field theory, Journal of Mathematical Physics, 53, 7, 072301, 30 pages, (2012) · Zbl 1276.81115 · doi:10.1063/1.4731770
[39] Oeckl, Robert, Free {F}ermi and {B}ose fields in {TQFT} and {GBF}, SIGMA. Symmetry, Integrability and Geometry. Methods and Applications, 9, 028, 46 pages, (2013) · Zbl 1283.81114 · doi:10.3842/SIGMA.2013.028
[40] Oeckl, Robert, Schr\"odinger–{F}eynman quantization and composition of observables in general boundary quantum field theory, Advances in Theoretical and Mathematical Physics, 19, 2, 451-506, (2015) · Zbl 1328.81211 · doi:10.4310/ATMP.2015.v19.n2.a2
[41] Oeckl, Robert, Towards state locality in quantum field theory: free fermions, Quantum Studies. Mathematics and Foundations, 4, 1, 59-77, (2017) · Zbl 1386.81141 · doi:10.1007/s40509-016-0086-6
[42] Oeckl, Robert, A local and operational framework for the foundations of physics, Advances in Theoretical and Mathematical Physics, 23, 2, 437-592, (2019) · Zbl 1486.81009 · doi:10.4310/ATMP.2019.v23.n2.a4
[43] Osterwalder, Konrad and Schrader, Robert, Axioms for {E}uclidean {G}reen’s functions, Communications in Mathematical Physics, 31, 83-112, (1973) · Zbl 0274.46047 · doi:10.1007/BF01645738
[44] Osterwalder, Konrad and Schrader, Robert, Axioms for {E}uclidean {G}reen’s functions. {II}, Communications in Mathematical Physics, 42, 281-305, (1975) · Zbl 0303.46034 · doi:10.1007/BF01608978
[45] Reeh, H. and Schlieder, S., Bemerkungen zur {U}nit\"ar\"aquivalenz von {L}orentzinvarianten {F}elden, 22, 1051-1068, (1961) · Zbl 0101.22402 · doi:10.1007/BF02787889
[46] Rindler, W., Kruskal space and the uniformly accelerated frame, American Journal of Physics, 34, 12, 1174-1178, (1966) · doi:10.1119/1.1972547
[47] Segal, G., The definition of conformal field theory, Differential Geometrical Methods in Theoretical Physics ({C}omo, 1987), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 250, 165-171, (1988), Kluwer Acad. Publ., Dordrecht · Zbl 0657.53060 · doi:10.1007/978-94-015-7809-7_9
[48] Segal, G., Quantum field theory
[49] Shale, David, Linear symmetries of free boson fields, Transactions of the American Mathematical Society, 103, 149-167, (1962) · Zbl 0171.46901 · doi:10.2307/1993745
[50] Smolin, Lee, Linking topological quantum field theory and nonperturbative quantum gravity, Journal of Mathematical Physics, 36, 11, 6417-6455, (1995) · Zbl 0856.58055 · doi:10.1063/1.531251
[51] Streater, R. F. and Wightman, A. S., P{CT}, spin and statistics, and all that, viii+181, (1964), W.A. Benjamin, Inc., New York – Amsterdam · Zbl 0135.44305
[52] Symanzik, K., Euclidean quantum field theory. {I}. {E}quations for a scalar model, Journal of Mathematical Physics, 7, 510-525, (1966) · doi:10.1063/1.1704960
[53] Turaev, V. G., Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, 18, x+588, (1994), Walter de Gruyter & Co., Berlin · Zbl 1346.57002 · doi:10.1515/9783110435221
[54] Unruh, W. G., Notes on black-hole evaporation, Physical Review. D. Third Series, 14, 4, 870-892, (1976) · doi:10.1103/PhysRevD.14.870
[55] Walker, K., On {W}itten’s 3-manifold invariants
[56] Woodhouse, N. M. J., Geometric quantization, Oxford Mathematical Monographs, xii+307, (1992), The Clarendon Press, Oxford University Press, New York · Zbl 0747.58004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.