×

High-order conservative scheme for the coupled space fractional nonlinear Schrödinger equations. (English) Zbl 1499.65451

Summary: In this paper, an efficient finite difference scheme is proposed for one dimension and two dimension coupled space fractional nonlinear Schrödinger equations. First, the high-order difference scheme and Crank-Nicolson scheme are used to one dimension coupled space fractional nonlinear Schrödinger equations. second, we show that the high-order conservative difference scheme satisfies the mass and energy conservation laws respectively, and convergence and unconditional stability of the scheme are also proved. Next, we give the high-order conservative scheme for two dimension coupled space fractional nonlinear Schrödinger equations. Finally, some numerical results are reported to verify our theoretical analysis.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N06 Finite difference methods for boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35Q55 NLS equations (nonlinear Schrödinger equations)
35Q41 Time-dependent Schrödinger equations and Dirac equations
26A33 Fractional derivatives and integrals
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J., Fractional Calculus: Models and Numerical Methods (2012), Singapore: World Scientific Publishing · Zbl 1248.26011
[2] Benney, D.; Newell, A., The propagation of nonlinear wave envelopes, J. Math. Phys., 46, 133-139 (1967) · Zbl 0153.30301
[3] Duo, S.; Zhang, Y., Mass-conservative fourier spectral methods for solving the fractional nonlinear Schrödinger equation, Comput. Math. Appl., 71, 2257-2271 (2016) · Zbl 1443.65242
[4] Guo, B.; Pu, X.; Huang, F., Fractional Partial Differential Equations and Their Numerical Solutions (2011), Singapore: World Scientific Publishing
[5] Hu, J.; Xin, J.; Lu, H., The global solution for a class of systems of fractional nonlinear Schrödinger equations with periodic boundary condition, Comput. Math. Appl., 62, 1510-1521 (2011) · Zbl 1228.35264
[6] Khaliq, A.; Liang, X.; Furati, K., A fourth-order implicit-explicit scheme for the space fractional nonlinear Schrödinger equations, Numer. Algor., 6, 1-26 (2016)
[7] Kirkpatrick, K.; Lenzmann, E.; Staffilani, G., On the continuum limit for discrete NLS with long-range lattice interactions, Commun. Math. Phys., 317, 563-591 (2013) · Zbl 1258.35182
[8] Li, M.; Huang, C.; Wang, N., Galerkin finite element method for the nonlinear fractional Ginzburg-Landau equation, Appl. Numer. Math., 118, 131-149 (2017) · Zbl 1367.65144
[9] Li, C.; Zeng, F., Numerical Methods for Fractional Calculus (2015), Chapman & Hall/CRC · Zbl 1326.65033
[10] Liu, F.; Zhuang, P.; Liu, Q., Beijing: Science Press, Numerical Methods and Their Applications of Fractional Partial Differential Equations (2015)
[11] Ortigueira, M., Riesz potential operators and inverses via fractional centred derivatives, Int. J. Math. Math. Sci., 2006, 1-12 (2006) · Zbl 1122.26007
[12] Sun, Z.; Gao, G., Finite Difference Methods for Fractional-Order Differential Equations (2015), Beijing: Science Press
[13] Sun, Z.; Zhao, D., On the Ll1 convergence of a difference scheme for coupled nonlinear Schrödinger equations, Comput. Math. Appl., 59, 3286-3300 (2010) · Zbl 1198.65173
[14] Wang, J., High-order conserative schemes for the space fractional nonlinear Schrödinger equation, Appl. Numer. Math., 165, 248-269 (2021) · Zbl 1475.65084
[15] Wang, T.; Guo, B.; Zhang, L., New conservative difference schemes for a coupled nonlinear Schrödinger system, Appl. Math. Comput., 217, 1604-1619 (2010) · Zbl 1205.65242
[16] Wang, P.; Huang, C., An energy conservative difference scheme for the nonlinear fractional Schrödinger equations, J. Comput. Phys., 293, 238-251 (2015) · Zbl 1349.65346
[17] Wang, P.; Huang, C.; Zhao, L., Point-wise error estimate of a conservative difference scheme for the fractional Schrödinger equation, J. Comput. Appl. Math., 306, 231-247 (2016) · Zbl 1382.65260
[18] Wang, T.; Nie, T.; Zhang, L., Analysis of a symplectic difference scheme for a coupled nonlinear Schrödinger system, J. Comput. Appl. Math., 231, 2, 745-759 (2009) · Zbl 1172.65049
[19] Wang, J.; Wang, Y., Numerical analysis of a new conservative scheme for the coupled nonlinear Schrödinger equations, Int. J. Comput. Math., 95, 8, 1583-1608 (2018) · Zbl 1499.65439
[20] Wang, D.; Xiao, A.; Yang, W., A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations, J. Comput. Phys., 272, 644-655 (2014) · Zbl 1349.65339
[21] Wang, D.; Xiao, A.; Yang, W., Maximum-norm error analysis of a difference scheme for the space fractional CNLS, Appl. Math. Comput., 257, 241-251 (2015) · Zbl 1339.65137
[22] Wang1, J.; Xiao, A.; Wang, C., A conservative difference scheme for space fractional Klein-Gordon-Schrödinger equations with a high-degree Yukawa interaction, East Asian J. Appl. Math., 8, 4, 715-745 (2018) · Zbl 1468.65114
[23] Xiao, A.; Wang, J., Symplectic scheme for the Schrödinger equation with fractional Laplacian, Appl. Numer. Math., 146, 469-487 (2019) · Zbl 1423.81070
[24] Zhang, Q.; Li, T., Asymptotic stability of compact and linear θ-methods for space fractional delay generalized diffusion equation, J. Sci. Comput., 81, 3, 2413-2446 (2019) · Zbl 1433.65172
[25] Zhang, Q.; Lin, X.; Pan, K.; Ren, Y., Linearized ADI schemes for two-dimensional space-fractional non-linear Ginzburg-Landau equation, Comput. Math. Appl., 80, 1201-1220 (2020) · Zbl 1447.65042
[26] Zhao, X.; Sun, Z.; Hao, Z., A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation, SIAM J. Sci. Comput., 36, 6, A2865-A2886 (2014) · Zbl 1328.65187
[27] Zhang, L.; Zhang, Q.; Sun, H., Exponential Runge-Kutta method for two-dimensional nonlinear fractional complex Ginzburg-Landau equations, J. Sci. Comput., 83, 59, 1-24 (2020) · Zbl 1442.65340
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.