×

A second-order BDF scheme for the Swift-Hohenberg gradient flows with quadratic-cubic nonlinearity and vacancy potential. (English) Zbl 1499.65382

Summary: In this paper, we propose a second-order BDF time marching scheme for the Swift-Hohenberg gradient flows (Swift-Hohenberg equation and phase-field crystal equation) with quadratic-cubic nonlinearity and vacancy potential. Based on the multiple scalar auxiliary variables (MSAV) approach and stabilization technique, an efficient, second-order accurate, and unconditionally energy stable numerical scheme is constructed. In this scheme, two new scalar auxiliary variables are introduced to deal with the nonlinear terms, and a linear stabilization term is added to enhance the stability and keep the required accuracy while using the large time steps. The unique solvability and unconditional energy stability are proved. Some numerical experiments are presented to demonstrate the accuracy and energy stability of the proposed scheme and show the effect of quadratic term and vacancy potential on pattern formation.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35Q35 PDEs in connection with fluid mechanics
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35R09 Integro-partial differential equations
Full Text: DOI

References:

[1] Baskaran, A.; Lowengrub, JS; Wang, C.; Wise, SM, Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation, SIAM J Numer Anal, 51, 5, 2851-2873 (2013) · Zbl 1401.82046 · doi:10.1137/120880677
[2] Cai, W.; Jiang, C.; Wang, Y.; Song, Y., Structure-preserving algorithms for the two-dimensional sine-Gordon equation with Neumann boundary conditions, J Comput Phys, 395, 166-185 (2019) · Zbl 1452.65393 · doi:10.1016/j.jcp.2019.05.048
[3] Chan PY (2007) Scaling and pattern formation in condensed matter systems. PhD thesis, University of Illinois at Urbana-Champaign
[4] Chan, PY; Goldenfeld, N.; Dantzig, J., Molecular dynamics on diffusive time scales from the phase-field-crystal equation, Phys Rev E, 79, 035701 (2009) · doi:10.1103/PhysRevE.79.035701
[5] Cheng, Q.; Shen, J., Multiple scalar auxiliary variable (MSAV) approach and its application to the phase-field vesicle membrane model, SIAM J Sci Comput, 40, 6, 3982-4006 (2018) · Zbl 1403.65045 · doi:10.1137/18M1166961
[6] Cheng, K.; Wang, C.; Wise, SM, An energy stable BDF2 Fourier pseudo-spectral numerical scheme for the square phase field crystal equation, Commun Comput Phys, 26, 5, 1335-1364 (2019) · Zbl 1518.65115 · doi:10.4208/cicp.2019.js60.10
[7] Dehghan, M.; Abbaszadeh, M., The meshless local collocation method for solving multi-dimensional Cahn-Hilliard, Swift-Hohenberg and phase field crystal equations, Eng Anal Bound Elem, 78, 49-64 (2017) · Zbl 1403.74285 · doi:10.1016/j.enganabound.2017.02.005
[8] Dehghan, M.; Mohammadi, V., The numerical simulation of the phase field crystal (PFC) and modified phase field crystal (MPFC) models via global and local meshless methods, Comput Methods Appl Mech Eng, 298, 453-484 (2016) · Zbl 1423.76321 · doi:10.1016/j.cma.2015.09.018
[9] Gomez, H.; Nogueira, X., A new space-time discretization for the Swift-Hohenberg equation that strictly respects the Lyapunov functional, Commun Nonlinear Sci Numer Simul, 17, 12, 4930-4946 (2012) · Zbl 1352.76109 · doi:10.1016/j.cnsns.2012.05.018
[10] Guo, R.; Xu, Y., Local discontinuous Galerkin method and high order semi-implicit scheme for the phase field crystal equation, SIAM J Sci Comput, 38, 1, 105-127 (2016) · Zbl 1330.65149 · doi:10.1137/15M1038803
[11] Lee, HG, A semi-analytical Fourier spectral method for the Swift-Hohenberg equation, Comput Math Appl, 74, 8, 1885-1896 (2017) · Zbl 1397.65205 · doi:10.1016/j.camwa.2017.06.053
[12] Lee, HG, An energy stable method for the Swift-Hohenberg equation with quadratic-cubic nonlinearity, Comput Methods Appl Mech Eng, 343, 40-51 (2019) · Zbl 1440.65150 · doi:10.1016/j.cma.2018.08.019
[13] Lee, HG; Shin, J.; Lee, J-Y, First and second order operator splitting methods for the phase field crystal equation, J Comput Phys, 299, 82-91 (2015) · Zbl 1351.74156 · doi:10.1016/j.jcp.2015.06.038
[14] Lee, HG; Shin, J.; Lee, J-Y, First- and second-order energy stable methods for the modified phase field crystal equation, Comput Methods Appl Mech Eng, 321, 1-17 (2017) · Zbl 1439.74240 · doi:10.1016/j.cma.2017.03.033
[15] Li, Q.; Mei, L., Numerical approximation of the two-component PFC models for binary colloidal crystals: efficient, decoupled, and second-order unconditionally energy stable schemes, J Sci Comput, 88, 3, 60 (2021) · Zbl 1500.65044 · doi:10.1007/s10915-021-01564-2
[16] Li, D.; Qiao, Z., On second order semi-implicit Fourier spectral methods for 2D Cahn-Hilliard equations, J Sci Comput, 70, 1, 301-341 (2017) · Zbl 1434.65206 · doi:10.1007/s10915-016-0251-4
[17] Li, Q.; Mei, L.; You, B., A second-order, uniquely solvable, energy stable BDF numerical scheme for the phase field crystal model, Appl Numer Math, 134, 46-65 (2018) · Zbl 06933817 · doi:10.1016/j.apnum.2018.07.003
[18] Li, Q.; Mei, L.; Yang, X.; Li, Y., Efficient numerical schemes with unconditional energy stabilities for the modified phase field crystal equation, Adv Comput Math, 45, 3, 1551-1580 (2019) · Zbl 1420.82021 · doi:10.1007/s10444-019-09678-w
[19] Li Q, Li X, Yang X, Mei L (2021a) Highly efficient and linear numerical schemes with unconditional energy stability for the anisotropic phase-field crystal model. J Comput Appl Math 383:113122-23 · Zbl 1452.65165
[20] Li Q, Yang X, Mei L (2021b) Efficient numerical scheme for the anisotropic modified phase-field crystal model with a strong nonlinear vacancy potential. Commun Math Sci 19(2):355-381 · Zbl 1475.65074
[21] Li Q, Mei L, Li Y (2021c) Efficient second-order unconditionally stable numerical schemes for the modified phase field crystal model with long-range interaction. J Comput Appl Math 389:113335-20 · Zbl 1466.65069
[22] Liu, H.; Yin, P., A mixed discontinuous Galerkin method without interior penalty for time-dependent fourth order problems, J Sci Comput, 77, 1, 467-501 (2018) · Zbl 1407.65168 · doi:10.1007/s10915-018-0756-0
[23] Liu, H.; Yin, P., Unconditionally energy stable DG schemes for the Swift-Hohenberg equation, J Sci Comput, 81, 2, 789-819 (2019) · Zbl 1427.65372 · doi:10.1007/s10915-019-01038-6
[24] Liu H, Yin P (2020) On the sav-dg method for a class of fourth order gradient flows. arXiv preprint. arXiv:2008.11877
[25] Liu H, Yin P (2021) Energy stable Runge-Kutta discontinuous Galerkin schemes for fourth order gradient flows. arXiv preprint. arXiv:2101.00152
[26] Shen, J.; Kimmel, R.; Tai, X-C, Chapter 17—efficient and accurate structure preserving schemes for complex nonlinear systems, Processing, analyzing and learning of images, shapes, and forms: part 2. Handbook of numerical analysis, 647-669 (2019), Amsterdam: Elsevier, Amsterdam · Zbl 1446.65213 · doi:10.1016/bs.hna.2019.06.004
[27] Shen, J.; Yang, X., Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discret Contin Dyn Syst, 28, 4, 1669-1691 (2010) · Zbl 1201.65184 · doi:10.3934/dcds.2010.28.1669
[28] Shen J, Yang X (2020) The IEQ and SAV approaches and their extensions for a class of highly nonlinear gradient flow systems. In: 75 Years of Mathematics of Computation · Zbl 1484.65196
[29] Shen, J.; Xu, J.; Yang, J., A new class of efficient and robust energy stable schemes for gradient flows, SIAM Rev, 61, 3, 474-506 (2019) · Zbl 1422.65080 · doi:10.1137/17M1150153
[30] Shin, J.; Lee, HG; Lee, J-Y, First and second order numerical methods based on a new convex splitting for phase-field crystal equation, J Comput Phys, 327, 519-542 (2016) · Zbl 1373.82097 · doi:10.1016/j.jcp.2016.09.053
[31] Wang, C.; Wise, SM, An energy stable and convergent finite-difference scheme for the modified phase field crystal equation, SIAM J Numer Anal, 49, 3, 945-969 (2011) · Zbl 1230.82005 · doi:10.1137/090752675
[32] Wise, SM; Wang, C.; Lowengrub, JS, An energy-stable and convergent finite-difference scheme for the phase field crystal equation, SIAM J Numer Anal, 47, 3, 2269-2288 (2009) · Zbl 1201.35027 · doi:10.1137/080738143
[33] Xu, Z.; Yang, X.; Zhang, H.; Xie, Z., Efficient and linear schemes for anisotropic Cahn-Hilliard model using the stabilized-invariant energy quadratization (S-IEQ) approach, Comput Phys Commun, 238, 36-49 (2019) · Zbl 07683954 · doi:10.1016/j.cpc.2018.12.019
[34] Yang, X., Efficient linear, stabilized, second-order time marching schemes for an anisotropic phase field dendritic crystal growth model, Comput Methods Appl Mech Eng, 347, 316-339 (2019) · Zbl 1440.74483 · doi:10.1016/j.cma.2018.12.012
[35] Yang, X.; Han, D., Linearly first- and second-order, unconditionally energy stable schemes for the phase field crystal model, J Comput Phys, 330, 1116-1134 (2017) · Zbl 1380.65209 · doi:10.1016/j.jcp.2016.10.020
[36] Zhang, J.; Yang, X., Numerical approximations for a new \(L^2\)-gradient flow based phase field crystal model with precise nonlocal mass conservation, Comput Phys Commun, 243, 51-67 (2019) · Zbl 07674815 · doi:10.1016/j.cpc.2019.05.006
[37] Zhang, J.; Yang, X., On efficient numerical schemes for a two-mode phase field crystal model with face-centered-cubic (FCC) ordering structure, Appl Numer Math, 146, 13-37 (2019) · Zbl 1428.65017 · doi:10.1016/j.apnum.2019.06.017
[38] Zhang, J.; Yang, X., Efficient second order unconditionally stable time marching numerical scheme for a modified phase-field crystal model with a strong nonlinear vacancy potential, Comput Phys Commun, 245, 106860 (2019) · Zbl 07674875 · doi:10.1016/j.cpc.2019.106860
[39] Zhang, J.; Chen, C.; Yang, X.; Chu, Y.; Xia, Z., Efficient, non-iterative, and second-order accurate numerical algorithms for the anisotropic Allen-Cahn equation with precise nonlocal mass conservation, J Comput Appl Math, 363, 444-463 (2020) · Zbl 1422.65198 · doi:10.1016/j.cam.2019.05.003
[40] Zhuang, Q.; Shen, J., Efficient SAV approach for imaginary time gradient flows with applications to one- and multi-component Bose-Einstein condensates, J Comput Phys, 396, 72-88 (2019) · Zbl 1452.65116 · doi:10.1016/j.jcp.2019.06.043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.