×

A uniformly convergent scheme for two-parameter problems having layer behaviour. (English) Zbl 1499.65325

Summary: We present a numerical scheme for the solution of two-parameter singularly perturbed problems whose solution has multi-scale behaviour in the sense that there are small regions where the solution changes very rapidly (known as layer regions) otherwise the solution is smooth (known as a regular region) throughout the domain of consideration. In particular, to solve the problems whose solution exhibits twin boundary layers at both endpoints of the domain of consideration, we propose a collocation method based on the quintic \(\mathcal{B}\)-spline basis functions. A piecewise-uniform mesh that increases the density within the layer region compared to the outer region is used. An \((N+1) \times (N+1)\) penta-diagonal system of algebraic equations is obtained after the discretization. A well-known fast penta-diagonal system solver algorithm is used to solve the system. We have shown that the method is almost fourth-order parameters uniformly convergent. The theoretical estimates are verified through numerical simulations for two test problems.

MSC:

65L10 Numerical solution of boundary value problems involving ordinary differential equations
65L11 Numerical solution of singularly perturbed problems involving ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
65L50 Mesh generation, refinement, and adaptive methods for ordinary differential equations
65L70 Error bounds for numerical methods for ordinary differential equations
Full Text: DOI

References:

[1] Avijit, D.; Natesan, S., SDFEM for singularly perturbed boundary-value problems with two parameters, J. Appl. Math. Comput., 64, 591-614 (2020) · Zbl 1475.65060
[2] Bigge, J.; Bohl, E., Deformations of the bifurcation diagram due to discretization, Math. Comp., 45, 393-403 (1985) · Zbl 0606.65058
[3] Brdar, M.; Zarin, H., A singularly perturbed problem with two parameters on a Bakhvalov-type mesh, J. Comput. Appl. Math., 292, 307-319 (2016) · Zbl 1327.65143
[4] Brdar, M.; Zarin, H., On graded meshes for a two-parameter singularly perturbed problem, Appl. Math. Comput., 282, 97-107 (2016) · Zbl 1410.65280
[5] Chen, J.; O’Malley Jr., R. E., On the asymptotic solution of a two-parameter boundary value problem of chemical reactor theory, SIAM J. Appl. Math., 26, 717-729 (1974) · Zbl 0254.34062
[6] de Boor, C., A Practical Guide to Splines (2001), Springer: Springer, New York · Zbl 0987.65015
[7] Durán, R. G.; Lombardi, A. L., Finite element approximation of convection diffusion problems using graded meshes, Appl. Numer. Math., 56, 1314-1325 (2006) · Zbl 1104.65109
[8] Farrell, P. A.; Hegarty, A. F.; Miller, J. J.H., Robust Computational Techniques for Boundary Layers (2000), Chapman & Hall: Chapman & Hall, London · Zbl 0964.65083
[9] Goh, J.; Majid, A. A.; Ismail, A. I.M., Numerical method using cubic B-spline for the heat and wave equation, Comput. Math. Appl., 62, 4492-4498 (2011) · Zbl 1236.65111
[10] Gracia, J. L.; O’Riordan, E.; Pickett, M. L., A parameter robust higher order numerical method for a singularly perturbed two-parameter problem, Appl. Numer. Math., 56, 962-980 (2006) · Zbl 1095.65067
[11] Hemker, P. W.; Shishkin, G. I.; Shishkina, L. P., ϵ-uniform schemes with high-order time-accuracy for parabolic singular perturbation problems, IMA J. Numer. Anal., 20, 99-121 (2000) · Zbl 0942.65095
[12] Kadalbajoo, M. K.; Yadaw, A. S., B-Spline collocation method for a two parameter singularly perturbed convection-diffusion boundary value problems, Appl. Math. Comput., 201, 504-513 (2008) · Zbl 1151.65063
[13] Kadalbajoo, M. K.; Yadaw, A. S., Finite difference, finite element and B-spline collocation methods applied to two parameter singularly perturbed boundary value problems, J. Numer. Anal. Ind. Appl. Math., 5, 163-180 (2011) · Zbl 1432.65104
[14] Kumar, D., A parameter-uniform method for singularly perturbed turning point problems exhibiting interior or twin boundary layers, Int. J. Comput. Math., 96, 865-882 (2019) · Zbl 1499.65324
[15] Kumar, D.; Yadaw, A. S.; Kadalbajoo, M. K., A parameter-uniform method for two parameters singularly perturbed boundary value problems via asymptotic expansion, Appl. Math. Inf. Sci., 7, 1525-1532 (2013) · Zbl 1269.34025
[16] Linß, T., The necessity of Shishkin decompositions, Appl. Math. Lett., 14, 891-896 (2001) · Zbl 0986.65071
[17] Linß, T., Layer-adapted meshes for one-dimensional reaction-convection-diffusion problems, J. Numer. Math., 12, 193-205 (2004) · Zbl 1056.65076
[18] Linß, T., A posteriori error estimation for a singularly perturbed problem with two small parameters, Int. J. Numer. Anal. Model., 7, 491-506 (2010) · Zbl 1197.65099
[19] Linß, T., Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems (2010), Springer-Verlag: Springer-Verlag, Berlin Heidelberg · Zbl 1202.65120
[20] Linß, T.; Roos, H.-G., Analysis of a finite-difference scheme for a singularly perturbed problem with two small parameters, J. Math. Anal. Appl., 289, 355-366 (2004) · Zbl 1043.65089
[21] Miller, J. J.H.; O’Riordan, E.; Shishkin, G. I., Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions (1996), World Scientific: World Scientific, Singapore · Zbl 0915.65097
[22] Nayfeh, A. H., Introduction to Perturbation Techniques (1993), John Wiley and Sons: John Wiley and Sons, New York
[23] Ng-Stynes, M. J.; O’Riordan, E.; Stynes, M., Numerical methods for time-dependent convection-diffusion equations, J. Comput. Appl. Math., 21, 289-310 (1988) · Zbl 0634.65108
[24] O’Malley Jr., R. E., Singular perturbations of boundary value problems for linear ordinary differential equations involving two-parameters, J. Math. Anal. Appl., 19, 291-308 (1967) · Zbl 0166.08001
[25] O’Malley Jr., R. E., Two-parameter singular perturbation problems for second order equations, J. Math. Mech., 16, 1143-1164 (1967) · Zbl 0173.11102
[26] O’Malley Jr., R. E., Boundary value problems for linear systems of ordinary differential equations involving many small parameters, J. Math. Mech., 18, 835-856 (1969) · Zbl 0177.11901
[27] O’Malley Jr., R. E., Introduction to Singular Perturbations (1974), Academic Press: Academic Press, New York · Zbl 0287.34062
[28] O’Malley Jr., R. E., Singular Perturbation Methods for Ordinary Differential Equations (1990), Springer: Springer, New York
[29] O’Malley Jr., R.E., Singular perturbation methods for ordinary differential equations, In: Applied Mathematical Sciences, Springer, New York, 1991. · Zbl 0743.34059
[30] O’Riordan, E.; Pickett, M. L., Numerical approximations to the scaled first derivatives of the solution to a two parameter singularly perturbed problem, J. Comput. Appl. Math., 347, 128-149 (2019) · Zbl 1406.65052
[31] O’Riordan, E.; Pickett, M. L.; Shishkin, G. I., Singularly perturbed problems modelling reaction-convection-diffusion processes, Comput. Methods Appl. Math., 3, 424-442 (2003) · Zbl 1040.65067
[32] Patidar, K. C., A robust fitted operator finite difference method for a two-parameter singular perturbation problem, J. Diff. Equ. Appl., 14, 1197-1214 (2008) · Zbl 1160.35322
[33] Roos, H.-G.; Stynes, M.; Tobiska, L., Numerical Methods for Singular Perturbed Differential Equations: Convection-Diffusion and Flow Problems (1996), Springer-Verlag: Springer-Verlag, New York · Zbl 0844.65075
[34] Roos, H.-G., Stynes, M., and Tobiska, L., Robust numerical methods for singularly perturbed differential equations, Springer Series in Computational Mathematics Vol. 24, Springer-Verlag, Berlin, Heidelberg, 2008. · Zbl 1155.65087
[35] Roos, H.-G.; Teofanov, L.; Uzelac, Z., Graded meshes for higher order FEM, J. Comput. Math., 33, 1-16 (2015) · Zbl 1340.65158
[36] Roos, H.-G.; Uzelac, Z., The SDFEM for a convection-diffusion problem with two small parameters, Comput. Methods Appl. Math., 3, 443-458 (2003) · Zbl 1034.65064
[37] Shishkin, G. I., On finite difference fitted schemes for singularly perturbed boundary value problems with a parabolic boundary layer, J. Math. Anal. Appl., 208, 181-204 (1997) · Zbl 0876.65075
[38] Shivhare, M., Chakravarthy, P.P., and Kumar, D., Quadratic B-spline collocation method for two-parameter singularly perturbed problem on exponentially graded mesh, Accepted in Int. J. Comput. Math.. · Zbl 1480.65187
[39] Singh, G.; Natesan, S., Study of the NIPG method for two-parameter singular perturbation problems on several layer adapted grids, J. Appl. Math. Comput., 63, 683-705 (2020) · Zbl 1475.65058
[40] Stynes, M.; O’Riordan, E., Uniformly convergent difference schemes for singularly perturbed parabolic diffusion-convection problems without turning points, Numer. Math., 55, 521-544 (1989) · Zbl 0671.65083
[41] Surla, K.; Uzelac, Z.; Teofanov, L., The discrete minimum principle for quadratic spline discretization of a singularly perturbed problem, Math. Comput. Simul., 79, 2490-2505 (2009) · Zbl 1166.65361
[42] Varah, J. M., A lower bound for the smallest singular value of a matrix, Linear Algebra Appl., 11, 3-5 (1975) · Zbl 0312.65028
[43] Vulanović, R., A higher-order scheme for quasilinear boundary value problems with two small parameters, Computing, 67, 287-303 (2001) · Zbl 1103.65321
[44] Vulanović, R., Special meshes and higher-order schemes for singularly perturbed boundary values problems, Novi Sad J. Math., 31, 1-7 (2001) · Zbl 1011.65052
[45] Wong, P. J.Y.; Agarwal, R. P., Explicit error estimates for quintic and biquintic spline interpolation, Comput. Math. Appl., 18, 701-722 (1989) · Zbl 0679.41009
[46] Wu, Y.; Zhang, N.; Yuan, J., A robust adaptive method for singularly perturbed convection-diffusion problem with two small parameters, Comput. Math. Appl., 66, 996-1009 (2013) · Zbl 07863335
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.