×

A medium-shifted splitting iteration method for a diagonal-plus-Toeplitz linear system from spatial fractional Schrödinger equations. (English) Zbl 1499.35693

Summary: The centered difference discretization of the spatial fractional coupled nonlinear Schrödinger equations obtains a discretized linear system whose coefficient matrix is the sum of a real diagonal matrix \(D\) and a complex symmetric Toeplitz matrix \(\tilde{T}\) which is just the symmetric real Toeplitz \(T\) plus an imaginary identity matrix \(iI\). In this study, we present a medium-shifted splitting iteration method to solve the discretized linear system, in which the fast algorithm can be utilized to solve the Toeplitz linear system. Theoretical analysis shows that the new iteration method is convergent. Moreover, the new splitting iteration method naturally leads to a preconditioner. Analysis shows that the eigenvalues of the corresponding preconditioned matrix are tighter than those of the original coefficient matrix \(A\). Finally, compared with the other algorithms by numerical experiments, the new method is more effective.

MSC:

35R11 Fractional partial differential equations
65F10 Iterative numerical methods for linear systems
26A33 Fractional derivatives and integrals
35A15 Variational methods applied to PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs

References:

[1] Demengel, F.; Demengel, G., Fractional Sobolev spaces, 179-228 (2012), London · Zbl 1239.46001 · doi:10.1007/978-1-4471-2807-6
[2] Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34(1), 200-218 (2010) · Zbl 1185.65200 · doi:10.1016/j.apm.2009.04.006
[3] Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62, 3135-3145 (2000) · Zbl 0948.81595 · doi:10.1103/PhysRevE.62.3135
[4] Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298-305 (2000) · Zbl 0948.81595 · doi:10.1016/S0375-9601(00)00201-2
[5] Guo, X.Y., Xu, M.Y.: Some physical applications of fractional Schrödinger equation. J. Math. Phys. 47, Article ID 082104 (2006) · Zbl 1112.81028 · doi:10.1063/1.2235026
[6] Giacomoni, J., Mukherjee, T., Sreenadh, K.: Positive solutions of fractional elliptic equation with critical and singular nonlinearity. Adv. Nonlinear Anal. 6(3), 327-354 (2017) · Zbl 1386.35438
[7] Lyons, J., Neugebauer, J.: Positive solutions of a singular fractional boundary value problem with a fractional boundary condition. Opusc. Math. 37(3), 421-434 (2017) · Zbl 1368.34012 · doi:10.7494/OpMath.2017.37.3.421
[8] Bisci, G.M., Radulescu, V., Servadei, R.: Variational Methods for Nonlocal Fractional Problems. Encyclopedia of Mathematics and Its Applications, vol. 162. Cambridge University Press, Cambridge (2016) · Zbl 1356.49003 · doi:10.1017/CBO9781316282397
[9] Bisci, G.M., Repovs, D.: Multiple solutions of p-biharmonic equations with Navier boundary conditions. Complex Var. Theory Appl. 59(2), 271-284 (2014) · Zbl 1287.35015 · doi:10.1080/17476933.2012.734301
[10] Pucci, P., Xiang, M., Zhang, B.: Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations. Adv. Nonlinear Anal. 5(1), 27-55 (2016) · Zbl 1334.35395
[11] Xiang, M., Zhang, B., Rǎdulescu, V.D.: Existence of solutions for perturbed fractional p-Laplacian equations. J. Differ. Equ. 260(2), 1392-1413 (2016) · Zbl 1332.35387 · doi:10.1016/j.jde.2015.09.028
[12] Xiang, M., Zhang, B., Rǎdulescu, V.D.: Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional p-Laplacian. Nonlinearity 29(10), 3186-3205 (2016) · Zbl 1349.35413 · doi:10.1088/0951-7715/29/10/3186
[13] Zhang, X., Zhang, B., Repovš, D.: Existence and symmetry of solutions for critical fractional Schrödinger equations with bounded potentials. Nonlinear Anal., Theory Methods Appl. 142, 48-68 (2016) · Zbl 1338.35013 · doi:10.1016/j.na.2016.04.012
[14] Guo, B.L., Han, Y.Q., Xin, J.: Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation. Appl. Math. Comput. 204, 468-477 (2008) · Zbl 1163.35483
[15] Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, Article ID 056108 (2002) · doi:10.1103/PhysRevE.66.056108
[16] Jeng, M., Xu, S.L.Y., Hawkins, E., Schwarz, J.M.: On the nonlocality of the fractional Schrödinger equation. J. Math. Phys. 51, Article ID 062102 (2010) · Zbl 1311.81114 · doi:10.1063/1.3430552
[17] Luchko, Y.: Fractional Schrödinger equation for a particle moving in a potential well. J. Math. Phys. 54, Article ID 012111 (2013) · Zbl 1280.81044 · doi:10.1063/1.4777472
[18] Jannelli, A., Ruggieri, M., Speciale, M.P.: Analytical and numerical solutions of fractional type advection-diffusion equation. AIP Conf. Proc. ICNAAM 1863(1), 81-97 (2017)
[19] Leo, R.A., Sicuro, G., Tempesta, P.: A theorem on the existence of symmetries of fractional PDEs. C. R. Math. 352(3), 219-222 (2014) · Zbl 1298.35240 · doi:10.1016/j.crma.2013.11.007
[20] Wang, D.L., Xiao, A.G., Yang, W.: Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative. J. Comput. Phys. 242(1), 670-681 (2013) · Zbl 1297.65100 · doi:10.1016/j.jcp.2013.02.037
[21] Atangana, A., Cloot, A.H.: Stability and convergence of the space fractional variable-order Schrödinger equation. Adv. Differ. Equ. 1, Article ID 80 (2013). https://doi.org/10.1186/1687-1847-2013-80 · Zbl 1380.35157 · doi:10.1186/1687-1847-2013-80
[22] Wang, D.L., Xiao, A.G., Yang, W.: A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations. J. Comput. Phys. 272, 644-655 (2014) · Zbl 1349.65339 · doi:10.1016/j.jcp.2014.04.047
[23] Wang, D.L., Xiao, A.G., Yang, W.: Maximum-norm error analysis of a difference scheme for the space fractional CNLS. Appl. Math. Comput. 257, 241-251 (2015) · Zbl 1339.65137
[24] Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1996) · Zbl 0845.65011
[25] Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996) · Zbl 0865.65009
[26] Varga, R.S.: Matrix Iterative Analysis. Prentice Hall, Englewood Cliffs (1962) · Zbl 0133.08602
[27] Bai, Z.Z.: Motivations and realizations of Krylov subspace methods for large sparse linear systems. J. Comput. Appl. Math. 283, 71-78 (2015) · Zbl 1311.65032 · doi:10.1016/j.cam.2015.01.025
[28] Bai, Z.Z., Benzi, M., Chen, F.: Modified HSS iteration methods for a class of complex symmetric linear systems. Computing 87, 93-111 (2010) · Zbl 1210.65074 · doi:10.1007/s00607-010-0077-0
[29] Bai, Z.Z., Benzi, M., Chen, F.: On preconditioned MHSS iteration methods for complex symmetric linear systems. Numer. Algorithms 56, 297-317 (2011) · Zbl 1209.65037 · doi:10.1007/s11075-010-9441-6
[30] Bai, Z.Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24(3), 603-626 (2003) · Zbl 1036.65032 · doi:10.1137/S0895479801395458
[31] Ran, Y.H., Wang, J.G., Wang, D.L.: On HSS-like iteration method for the space fractional coupled nonlinear Schrödinger equations. Appl. Math. Comput. 271, 482-488 (2015) · Zbl 1410.65325
[32] Bai, Z.Z., Golub, G.H., Li, C.K.: Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices. Math. Comput. 76, 287-298 (2007) · Zbl 1114.65034 · doi:10.1090/S0025-5718-06-01892-8
[33] Bai, Z.Z., Golub, G.H., Pan, J.Y.: Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer. Math. 98(1), 1-32 (2004) · Zbl 1056.65025 · doi:10.1007/s00211-004-0521-1
[34] Ortigueira, M.D.: Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci. 2006, Article ID 48391 (2006). https://doi.org/10.1155/IJMMS/2006/48391 · Zbl 1122.26007 · doi:10.1155/IJMMS/2006/48391
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.