×

Existence of mild solutions for Sobolev-type Hilfer fractional evolution equations with boundary conditions. (English) Zbl 1499.34385

Summary: This paper is concerned with the fractional differential equations of Sobolev type with boundary conditions in a Banach space. With the help of the properties of Hilfer fractional calculus, the theory of propagation families as well as the theory of the measure of noncompactness and fixed point methods, we obtain the existence results of mild solutions for Sobolev-type fractional evolution differential equations involving the Hilfer fractional derivative. Finally, an example is presented to illustrate the main result.

MSC:

34K30 Functional-differential equations in abstract spaces
26A33 Fractional derivatives and integrals
34K45 Functional-differential equations with impulses
35B10 Periodic solutions to PDEs
47D06 One-parameter semigroups and linear evolution equations

References:

[1] Agarwal, R.P., Benchohra, M., Hamani, S.: A survey on existence result for boundary value problem of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109, 973-1033 (2010) · Zbl 1198.26004 · doi:10.1007/s10440-008-9356-6
[2] Aghajani, A., Banaś, J., Sabzali, N.: Some generalizations of Darbo fixed point theorem and application. Bull. Belg. Math. Soc. Simon Stevin 20(2), 345-358 (2013) · Zbl 1290.47053
[3] El-Borai, M.M.: The fundamental solutions for fractional evolution equations of parabolic type. J. Appl. Math. Stoch. Anal. 3, 197-211 (2004) · Zbl 1081.34053 · doi:10.1155/S1048953304311020
[4] Furati, K.M., Kassim, M.D., Tatar, N.E.: Existence and uniqueness for a problem involving Hilfer factional derivative. Comput. Math. Appl. 64, 1612-1626 (2012) · Zbl 1268.34013 · doi:10.1016/j.camwa.2012.01.009
[5] Gu, H., Trujillo, J.J.: Existence of mild solution for evolution equation with Hilfre fractional derivative. Appl. Math. Comput. 257, 344-354 (2015) · Zbl 1338.34014
[6] Li, F., Liang, J., Xu, H.K.: Existence of mild solutions for fractional integrodifferential equations of Sobolev type with nonlocal conditions. J. Math. Anal. Appl. 391, 510-525 (2012) · Zbl 1242.45009 · doi:10.1016/j.jmaa.2012.02.057
[7] Lakzian, H., Gopal, D., Sintunavarat, W.: New fixed point results for mappings of contractive type with an application to nonlinear fractional differential equations. J. Fixed Point Theory Appl. https://doi.org/10.1007/s11874-015-0275-7 · Zbl 1349.54108
[8] Mainardi, F.; Ponce, R.; Gorenflo, R.; Kondor, K. I. (ed.), Probability distributions generated by fractional diffusion equations, No. 216, 61-69 (2010)
[9] Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000) · Zbl 0998.26002 · doi:10.1142/3779
[10] Bachar, I., Maagli, H., Radulescu, V.: Positive solutions for superlinear Riemann-Liouville fractional boundary-value problems. Electron. J. Differ. Equ. 2017, 240 (2017) · Zbl 1372.34008 · doi:10.1186/s13662-017-1293-0
[11] Denton, Z., Ramírez, J.D.: Existence of minimal and maximal solutions to RL fractional integro-differential initial value problems. Opusc. Math. 37(5), 705-724 (2017) · Zbl 1513.45021 · doi:10.7494/OpMath.2017.37.5.705
[12] Guner, O., Bekir, A., Bilgil, H.: A note on exp-function method combined with complex transform method applied to fractional differential equations. Adv. Nonlinear Anal. 4(3), 201-208 (2015) · Zbl 1325.35258
[13] Idczak, D., Walczak, S.: On a linear-quadratic problem with Caputo derivative. Opusc. Math. 36(1), 49-68 (2016) · Zbl 1343.49055 · doi:10.7494/OpMath.2016.36.1.49
[14] Molica Bisci, G., Repovs, D.: Multiple solutions of p-biharmonic equations with Navier boundary conditions. Complex Var. Elliptic Equ. 59(2), 271-284 (2014) · Zbl 1287.35015 · doi:10.1080/17476933.2012.734301
[15] Torres Ledesma, C.: Boundary value problem with fractional p-Laplacian operator. Adv. Nonlinear Anal. 5(2), 133-146 (2016) · Zbl 1337.26019
[16] Xiang, M., Zhang, B., Radulescu, V.: Existence of solutions for perturbed fractional p-Laplacian equations. J. Differ. Equ. 260(2), 1392-1413 (2016) · Zbl 1332.35387 · doi:10.1016/j.jde.2015.09.028
[17] Zhang, X., Zhang, B., Repovs, D.: Existence and symmetry of solutions for critical fractional Schrödinger equations with bounded potentials. Nonlinear Anal. 142, 48-68 (2016) · Zbl 1338.35013 · doi:10.1016/j.na.2016.04.012
[18] Balachandran, K., Kiruthika, S.: Existence of solutions of abstract fractional impulsive semilinear evolution equations. Electron. J. Qual. Theory Differ. Equ. 2010, 4 (2010) · Zbl 1201.34091
[19] Liang, J., Xiao, T.J.: Abstract degenerate Cauchy problems in locally convex spaces. J. Math. Anal. Appl. 259, 398-412 (2001) · Zbl 1004.34043 · doi:10.1006/jmaa.2000.7406
[20] Wang, G., Zhang, L., Song, G.: Systems of first order impulsive functional differential equations with deviating arguments and nonlinear boundary conditions. Nonlinear Anal. 74, 974-982 (2011) · Zbl 1223.34091 · doi:10.1016/j.na.2010.09.054
[21] Ahmad, B., Sivasundaram, S.: Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations. Nonlinear Anal. Hybrid Syst. 3, 251-258 (2009) · Zbl 1193.34056 · doi:10.1016/j.nahs.2009.01.008
[22] Benchohra, M., Seba, D.: Impulsive fractional differential equations in Banach spaces. Electron. J. Qual. Theory Differ. Equ. 2009, 8 (2009) · Zbl 1189.26005
[23] Benchohra, M., Henderson, J., Ntouyas, S.: Impulsive Differential Equations and Inclusions. Contemporary Mathematics and Its Applications, vol. 2. Hindawi, Cairo (2006) · Zbl 1130.34003 · doi:10.1155/9789775945501
[24] Li, K., Peng, J., Jia, J.: Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives. J. Funct. Anal. 263, 476-510 (2012) · Zbl 1266.47066 · doi:10.1016/j.jfa.2012.04.011
[25] Liu, Y.: Existence of solutions for impulsive differential models on half lines involving Caputo fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 18, 2604-2625 (2013) · Zbl 1306.34010 · doi:10.1016/j.cnsns.2013.02.003
[26] Zhou, Y., Jiao, F.: Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal., Real World Appl. 11, 4465-4475 (2010) · Zbl 1260.34017 · doi:10.1016/j.nonrwa.2010.05.029
[27] Hernández, E., O’Regan, D., Balachandran, K.: On recent developments in the theory of abstract differential equations with fractional derivatives. Nonlinear Anal. 73, 3462-3471 (2010) · Zbl 1229.34004 · doi:10.1016/j.na.2010.07.035
[28] Cabada, A., Hamdi, Z.: Nonlinear fractional differential equations with integral boundary value conditions. Appl. Math. Comput. 228, 251-257 (2014) · Zbl 1364.34010
[29] Wang, J., Fečkan, M., Zhou, Y.: On the new concept of solutions and existence results for impulsive fractional evolution equations. Dyn. Partial Differ. Equ. 8, 345-361 (2011) · Zbl 1264.34014 · doi:10.4310/DPDE.2011.v8.n4.a3
[30] Kumar, S., Sukavanam, N.: Approximate controllability of fractional order semilinear systems with bounded delay. J. Differ. Equ. 252, 6163-6174 (2012) · Zbl 1243.93018 · doi:10.1016/j.jde.2012.02.014
[31] Stamova, I.: Global stability of impulsive fractional differential equations. Appl. Math. Comput. 237, 605-612 (2014) · Zbl 1334.34120
[32] Hilfer, R., Luchko, Y., Tomovski, Z̆.: Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives. Fract. Calc. Appl. Anal. 12(3), 299-318 (2009) · Zbl 1182.26011
[33] Hilfer, R.: In: Hilfer, R. (ed.) Fractional Time Evolution, Applications of Fractional Calculus in Physics, pp. 87-130. World Scientific, Singapore (2000) · Zbl 0994.34050 · doi:10.1142/9789812817747_0002
[34] Gou, H., Li, B.: Existence of mild solutions for fractional nonautonomous evolution equations of Sobolev type with delay. J. Inequal. Appl. 2017, 252 (2017) · Zbl 1372.34119 · doi:10.1186/s13660-017-1526-5
[35] Wang, J., Zhang, Y.: Nonlocal initial value problems for differential equations with Hilfer fractional derivative. Appl. Math. Comput. 266, 850-859 (2015) · Zbl 1410.34032
[36] Gao, Z.Y., Yu, X.L.: Existence results for BVP of a class of Hilfer fractional differential equations. J. Appl. Math. Comput. https://doi.org/10.1007/s12190-016-1070-3 · Zbl 1384.34013
[37] Lightbourne, J.H., Rankin, S.M.: A partial functional differential equation of Sobolev type. J. Math. Anal. Appl. 93, 328-337 (1983) 245, 74-85 (2014) · Zbl 0519.35074 · doi:10.1016/0022-247X(83)90178-6
[38] Kerboua, M., Debbouche, A., Baleanu, D.: Approximate controllability of Sobolev type fractional stochastic nonlocal nonlinear differential equations in Hilbert spaces. Electron. J. Qual. Theory Differ. Equ. 58, 1 (2014) · Zbl 1324.93020 · doi:10.14232/ejqtde.2014.1.58
[39] Ponce, R.: Holder continuous solutions for Sobolev type differential equations. Math. Nachr. 287, 70-78 (2014) · Zbl 1302.34093 · doi:10.1002/mana.201200168
[40] Agarwal, R., Meehan, M., O’Regan, D.: Fixed Point Theory and Applications. Cambridge University Press, Cambridge (2001) · Zbl 0960.54027 · doi:10.1017/CBO9780511543005
[41] Guo, D., Cho, Y., Zhu, J.: Partial Ordering Methods in Nonlinear Problems. NOVA Publ., New York (2004) · Zbl 1116.45007
[42] Li, Y.X.: The positive solutions of abstract semilinear evolution equations and their applications. Acta Math. Sin. 39(5), 666-672 (1996) (in Chinese) · Zbl 0870.47040
[43] Banas, J., Goebel, K.: Measure of Noncompactness in Banach Spaces. Lect. Notes Pure Appl. Math., vol. 60. Dekker, New York (1980) · Zbl 0441.47056
[44] EI-Borai, M.M.: Some probability densities and fundamental solutions of fractional evolution equations. Chaos Solitons Fractals 14, 433-440 (2002) · Zbl 1005.34051 · doi:10.1016/S0960-0779(01)00208-9
[45] Deimling, K.: Nonlinear Functional Analysis. Springer, New York (1985) · Zbl 0559.47040 · doi:10.1007/978-3-662-00547-7
[46] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) · Zbl 1092.45003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.