×

Estimates of conjugate harmonic functions with given set of singularities and application. (English) Zbl 1499.31001

Let \(\mathbb{D}\) be the unit disk in the complex plane \(\mathbb{C}\) and \(\partial\mathbb{D}\) denote its boundary (the unit circle). For a harmonic function \(u\) on the unit disk \(\mathbb{D}\), denote by \(\tilde{u}\) the harmonic conjugate function of \(u\). Let \(E\) be an arbitrary closed set on the unit circle \(\partial\mathbb{D}\). If \(u\) satisfies the inequality \(|u(z)|\leq C_0(1-|z|)^\gamma\rho^{-q}(z)\) where \(\rho(z)={\text{ dist}}\,(z,E)\), \(C_0\), \(\gamma\), \(q\) are some real constants, \(\gamma\leq q\), then there exists \(C_1=C_1(C_0,q,\gamma)>0\) such that \[\begin{aligned} |\tilde{u}(z)|\leq C_1 (1-|z|)^\gamma\rho^{-q}(z),\quad & \text{when }q>0>\gamma \\ C_1 (-\log(1-|z|)\rho^{\gamma-q}(z)),\quad & \text{when }q>\gamma\geq0 \\ C_1 (-\log\rho(z)), \quad & \text{when } q=\gamma>0 \end{aligned}\] for \(2^{-1}\leq|z|<1\).
Let \(0<\gamma<1\), \(\alpha\geq0\), and \(u(z)\) have the form \[u(re^{i\theta})=\int_{\partial\mathbb{D}}P_\alpha(z\bar\zeta)\,d\mu(\zeta),\] where \(\mu\) is a complex finite Borel measure on \(\partial\mathbb{D}\), \[P_\alpha(z)=\operatorname{Re}\left(\Gamma(1+\alpha)\left(\frac2{(1-z)^{1+\alpha}}-1\right)\right).\] As an application, the authors describe growth classes defined by the non-radial condition \(|u(z)|\leq C_0\rho^{-q}(z)\) in terms of the smoothness of the Stieltjes measure \(\mu\) associated to the harmonic function \(u\).

MSC:

31A05 Harmonic, subharmonic, superharmonic functions in two dimensions
30J99 Function theory on the disc
30E20 Integration, integrals of Cauchy type, integral representations of analytic functions in the complex plane
31A10 Integral representations, integral operators, integral equations methods in two dimensions
31A20 Boundary behavior (theorems of Fatou type, etc.) of harmonic functions in two dimensions

References:

[1] Ahern, P.; Clark, D., On inner functions with B^p derivative, Michigan Math. J., 23, 107-118 (1976) · Zbl 0343.30023 · doi:10.1307/mmj/1029001659
[2] Aleman, A.; Constantin, O., Spectra of integration operators on weighted Bergman spaces, J. Anal. Math., 109, 199-231 (2009) · Zbl 1207.47042 · doi:10.1007/s11854-009-0031-2
[3] Aleman, A.; Pott, S.; Reguera, M. C., Characterizations of a limiting class of Békollé-Bonami weights, Rev. Mat. Iberoam., 35, 1677-1692 (2019) · Zbl 1501.30006 · doi:10.4171/rmi/1097
[4] Bao, G.; Wulan, H.; Zhu, K., A Hardy-Littlewood theorem for Bergman spaces, Ann. Acad. Sci. Fenn., 43, 807-821 (2018) · Zbl 1407.30029 · doi:10.5186/aasfm.2018.4345
[5] Borichev, S.; Golinskii, L.; Kupin, S., A Blaschke-type condition and its application to complex Jacobi matrices, Bull. Lond. Math. Soc., 41, 117-123 (2009) · Zbl 1175.30007 · doi:10.1112/blms/bdn109
[6] Borichev, S.; Golinskii, L.; Kupin, S., On zeros of analytic functions satisfying nonradial growth conditions, Rev. Mat. Iberoam., 34, 1153-1176 (2018) · Zbl 1401.30004 · doi:10.4171/RMI/1020
[7] Cartwright, M. L., On analytic functions regular in the unit circle. I, Quart. J. Math., 4, 246-257 (1933) · Zbl 0008.11803
[8] Chyzhykov, I., A generalization of Hardy-Littlewood’s theorem, Mat. Metodi Fiz.-Mekh. Polya, 49, 74-79 (2006) · Zbl 1126.31300
[9] Chyzhykov, I., Growth and representation of analytic and harmonic functions in the unit disk, Ukr. Math. Bull., 3, 31-44 (2006) · Zbl 1155.31300
[10] Chyzhykov, I., On a complete description of the class of functions without zeros analytic in a disk and having given orders, Ukrainian Math. J., 59, 1088-1109 (2007) · Zbl 1150.30019 · doi:10.1007/s11253-007-0070-8
[11] Chyzhykov, I., Argument of bounded analytic functions and Frostman’s type conditions, Illinois J. Math., 53, 515-531 (2009) · Zbl 1188.30063 · doi:10.1215/ijm/1266934790
[12] Chyzhykov, I., Asymptotic behaviour of pth means of analytic and subharmonic functions in the unit disc and angular distribution of zeros, Israel J. Math., 236, 931-957 (2020) · Zbl 1441.31002 · doi:10.1007/s11856-020-1996-x
[13] Djrbashian, M., Integral Transforms and Representations of Functions in the Complex Domain (1966), Moscow: Nauka, Moscow · Zbl 0154.37702
[14] Duren, P. L., Theory of H^pSpaces (1970), New York, London: Academic Press, New York, London · Zbl 0215.20203
[15] Favorov, S.; Golinskii, L., A Blaschke-type condition for analytic and subharmonic functions and application to contraction operators, Linear and Complex Analysis, 37-47 (2009), Providence, RI: Amer. Math. Soc., Providence, RI · Zbl 1188.30064
[16] Favorov, S.; Golinskii, L., Blaschke-type conditions for analytic and subharmonic functions in the unit disk: local analogs and inverse problems, Comput. Methods Funct. Theory, 12, 151-166 (2012) · Zbl 1242.31001 · doi:10.1007/BF03321819
[17] S. Favorov and L. Golinskii, On a Blaschke-type condition for subharmonic functions with two sets of singularities on the boundary, in: Complex Function Theory, Operator Theory, Schur Analysis and Systems Theory, D. Alpay, B. Fritzsche, B. Kirstein, Eds., Springer Internat. Publishing (2020). · Zbl 1462.30071
[18] Golubev, V. V., Study on the theory of singular points of single-valued analytic functions, Single Valued Analytic Functions. Automorphic Functions, 197-370 (1961), Moscow: Izdat. Fiz. Mat. Lit., Moscow
[19] Hardy, G. H.; Littlewood, J., Some properties of fractional integrals. II, Math. Z., 34, 403-439 (1931) · Zbl 0003.15601 · doi:10.1007/BF01180596
[20] Hedenmalm, H.; Korenblum, B.; Zhu, K., Theory of Bergman Spaces (2000), New York, Berlin: Springer, New York, Berlin · Zbl 0955.32003 · doi:10.1007/978-1-4612-0497-8
[21] Lieb, E.; Loss, M., Analysis (1997), Providence, RI: Amer. Math. Soc., Providence, RI · Zbl 0966.26002
[22] J. Peláez and J. Rättyä, Weighted Bergman spaces induced by rapidly increasing weights, Mem. Amer. Math. Soc., 227 (2014). · Zbl 1308.30001
[23] J. Peláez and J. Rättyä, Weighted norm inequalities for derivatives on Bergman spaces, preprint. · Zbl 1288.30060
[24] Privalov, I. I., Boundary Values of Single Valued Factions (1941), Moscow: MGU, Moscow
[25] Sheremeta, M. M., On the asymptotic behaviour of Cauchy-Stieltjes integrals, Mat. Stud., 7, 175-178 (1997) · Zbl 0974.30569
[26] Shields, A. L.; Williams, D. L., Bounded projections and the growth of harmonic conjugates in the unit disc, Michigan Math. J., 29, 3-25 (1982) · Zbl 0508.31001 · doi:10.1307/mmj/1029002611
[27] Tsuji, M., Potential Theory in Modern Function Theory (1975), New York: Chelsea Publishing Co., New York · Zbl 0322.30001
[28] Zhu, K., Spaces of Holomorphic Functions in the Unit Ball (2005), New York, Berlin: Springer, New York, Berlin · Zbl 1067.32005
[29] Zygmund, A., Trigonometric series (1959), New York: Cambridge Univ. Press, New York · Zbl 0085.05601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.