×

Hybrid breather and rogue wave solution for a (2 + 1)-dimensional ferromagnetic spin chain system with variable coefficients. (English) Zbl 1499.30276

Summary: In this paper, under investigation is a \(2+1\)-dimensional nonlinear ferromagnetic spin chain system with variable coefficients. The system can be used to describe wave propagation in ferromagnetic materials. An algebraic iterative technique is proposed to construct a new hybrid breather and rogue wave solution of the system. Furthermore, abundant interaction behaviours between the breather and rogue wave are observed by choosing variable coefficient function and adjusting the parameters.

MSC:

30D35 Value distribution of meromorphic functions of one complex variable, Nevanlinna theory
34A05 Explicit solutions, first integrals of ordinary differential equations
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
Full Text: DOI

References:

[1] Chabchoub, A.; Hoffmann, N. P.; Akhmediev, N., Rogue wave observation in a water wave tank, Phys. Rev. Lett., 106 (2011)
[2] Chabchoub, A.; Hoffmann, B.; Onorato, M.; Akhmediev, N., Super rogue waves: Observation of a higher-order breather in water waves, Phys. Rev. X, 2 (2012)
[3] Goda, K.; Jalali, B., Dispersive Fourier transformation for fast continuous single-shot measurements, Nat. Photon., 7, 102-112 (2013)
[4] Guan, W. Y.; Li, B. Q., Asymmetrical, self-similar and polymorphic structures of optical breathers for the Manakov system in photorefractive crystals and randomly birefringent fibers, Optik, 194 (2019)
[5] Guan, W. Y.; Li, B. Q., Mixed structures of optical breather and rogue wave for a variable coefficient inhomogeneous fiber system, Opt. Quant. Electron., 51, 352 (2019)
[6] Guan, W. Y.; Li, B. Q., New observation on the breather for a generalized nonlinear Schrödinger system with two higher-order dispersion operators in inhomogeneous optical fiber, Optik, 181, 853-861 (2019)
[7] Guo, B. L.; Ling, L. M.; Liu, Q. P., Nonlinear Schrödinger equation generalized Darboux transformation and rogue wave solutions, Phys. Rev. E, 85 (2012)
[8] Kavitha, L.; Parasuraman, E.; Gopi, E.; Bhuvaneswari, S., Propagation of electromagnetic solitons in an antiferromagnetic spinladder medium, J. Electromagn. Wave Appl., 30, 740-766 (2016)
[9] Kharif, C.; Celinovsky, E., Physical mechanisms of the rogue wave phenomenon, Eur. J. Mech. B-Fluids, 22, 603-634 (2003) · Zbl 1058.76017
[10] Kibler, B.; Fatome, J.; Finot, C.; Millot, G.; Dias, F.; Genty, G.; Akhmediev, N.; Dudley, J. M., The peregrine soliton in nonlinear fibre optics, Nat. Phys., 6, 790-795 (2010)
[11] Kwang-Hua, C. R.; Li, Z. H., Viscosity for solid He-4 transport, Fluid Phase Equil., 389, 64-66 (2015)
[12] Lan, Z. Z., Dark solitonic interactions for the \(####\)-dimensional coupled nonlinear Schringer equations in nonlinear optical fibers, Opt. Laser Technol., 113, 462-466 (2019)
[13] Lan, Z. Z., Periodic, breather and rogue wave solutions for a generalized \(####\)-dimensional variable-coefficient B-type Kadomtsev-Petviashvili equation in fluid dynamics, Appl. Math. Lett., 94, 126-132 (2019) · Zbl 1412.35050
[14] Lan, Z. Z., Rogue wave solutions for a coupled nonlinear Schrödinger equation in the birefringent optical fiber, Appl. Math. Lett., 98, 128-134 (2019) · Zbl 1428.35522
[15] Lan, Z. Z.; Gao, B., Lax pair, infinitely many conservation laws and solitons for a \(####\)-dimensional Heisenberg ferromagnetic spin chain equation with time-dependent coefficients, Appl. Math. Lett., 79, 6-12 (2018) · Zbl 1459.82338
[16] Lan, Z. Z.; Hu, W. Q.; Guo, B. L., General propagation lattice Boltzmann model for a variable-coefficient compound KdV-Burgers equation, Appl. Math. Model., 73, 695-714 (2019) · Zbl 1481.76160
[17] Lan, Z. Z.; Su, J. J., Solitary and rogue waves with controllable backgrounds for the non-autonomous generalized AB system, Nonlinear Dyn., 96, 2535-2546 (2019) · Zbl 1468.76017
[18] Latha, M. M.; Vasanthi, C. C., An integrable model of \(####\)-dimensional Heisenberg ferromagnetic spin chain and soliton excitations, Phys. Scr., 89 (2014)
[19] Li, B. Q., Breather phase transitions for a three-component transient stimulated Raman scattering system in nonlinear optics, Phys. Scr., 95 (2020)
[20] Li, L. Q.; Gao, Y. T.; Hu, L.; Jia, T. T.; Ding, C. C.; Feng, Y. J., Bilinear form, soliton, breather, lump and hybrid solutions for a \(####\)-dimensional Sawada-Kotera equation, Nonlinear Dyn., 100, 2729-2738 (2020) · Zbl 1516.37117
[21] Li, B. Q.; Guan, W. Y., Optical vector lattice breathers of a two-component Rabi-coupled gross-Pitaevskii system with variable coefficients, Optik, 194 (2019)
[22] Li, C. Z.; He, J. S., Darboux transformation and positons of the inhomogeneous Hirota and the Maxwell-Bloch equation, Sci. China Phys. Mech. Astr., 57, 898-907 (2014)
[23] Li, B. Q.; Ma, Y. L., Gaussian rogue waves for a nonlinear variable coefficient Schrodinger system in inhomogeneous optical nanofibers, Nanoelectr. Optoelectr., 12, 1397-1401 (2017)
[24] Li, B. Q.; Ma, Y. L., Characteristics of rogue waves for a \(####\)-dimensional Heisenberg ferromagnetic spin chain system, J. Magn. Magn. Mater., 474, 537-543 (2019)
[25] Li, B. Q.; Ma, Y. L., Lax pair, Darboux transformation and nth-order rogue wave solutions for a \(####\)-dimensional Heisenberg ferromagnetic spin chain equation, Comput. Math. Appl., 77, 514-524 (2019) · Zbl 1442.35425
[26] Li, B. Q.; Ma, Y. L., Extended generalized Darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schrödinger equation, Appl. Math. Comput., 386 (2020) · Zbl 1497.35436
[27] Li, B. Q.; Ma, Y. L., N-order rogue waves and their novel colliding dynamics for a transient stimulated Raman scattering system arising from nonlinear optics, Nonlinear Dyn. (2020) · Zbl 1517.78005 · doi:10.1007/s11071-020-05906-x
[28] Ling, L. M.; Liu, Q. P., Darboux transformation for a two-component derivative nonlinear Schrödinger equation, J. Phys. A Math. Theor., 43 (2010) · Zbl 1202.35302
[29] Liu, Y. K.; Li, B.; Wazwaz, A. M., Novel high-order breathers and rogue waves in the Boussinesq equation via determinants, Math. Meth. Appl. Sci., 43, 3701-3715 (2020) · Zbl 1447.35108
[30] Liu, C.; Ren, Y.; Yang, Z. Y.; Yang, W. L., Superregular breathers in a complex modified Korteweg-de vries system, Chaos, 27 (2017) · Zbl 1390.35310
[31] Liu, D. Y.; Tian, B.; Jiang, Y.; Xie, X. Y.; Wu, X. Y., Analytic study on a \(####\)-dimensional nonlinear Schrödinger equation in the Heisenberg ferromagnetism, Comput. Math. Appl., 71, 2001-2007 (2016) · Zbl 1443.82014
[32] Liu, C.; Yang, Z. Y.; Zhao, L. C.; Duan, L.; Yang, G. Y.; Yang, W. L., Symmetric and asymmetric optical multipeak solitons on a continuous wave background in the femtosecond regime, Phys. Rev. E, 94 (2016)
[33] Ma, Y. L., Interaction and energy transition between the breather and rogue wave for a generalized nonlinear Schrödinger system with two higher-order dispersion operators in optical fibers, Nonlinear Dyn., 97, 95-105 (2019) · Zbl 1430.35210
[34] Ma, Y. L., Abundant excited optical breathers for a nonlinear Schrödinger equation with variable dispersion and nonlinearity terms in inhomogeneous fiber optics, Optik, 201 (2020)
[35] Ma, Y. L., N-solitons, breathers and rogue waves for a generalized Boussinesq equation, Int. J. Comput. Math., 97, 1648-1661 (2020) · Zbl 1492.35227
[36] Ma, Y. L.; Li, B. Q., Mixed lump and soliton solutions for a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation, AIMS Math., 5, 1162-1176 (2020) · Zbl 1484.35338
[37] Ma, Y. L.; Li, B. Q.; Fu, Y. Y., A series of the solutions for the Heisenberg ferromagnetic spin chain equation, Math. Methods Appl. Sci., 41, 3316-3322 (2018) · Zbl 1394.35507
[38] Nguepjouo, F. T.; Kuetche, V. K.; Kofane, T. C., Soliton interactions between multivalued localized waveguide channels within ferrites, Phys. Rev. E, 89 (2014)
[39] Onorato, M.; Residori, S.; Bortolozzo, U.; Montina, A.; Arecchi, F. T., Rogue waves and their generating mechanisms in different physical contexts, Phys. Rep., 528, 47-89 (2013)
[40] Solli, D. R.; Ropers, C.; Koonath, P.; Jalali, B., Optical rogue waves, Nature, 450, 1054 (2007)
[41] Tang, G. S.; Wang, S. H.; Wang, G. W., Solitons and complexitons solutions of an integrable model of \(####\)-dimensional Heisenberg ferromagnetic spin chain, Nonlinear Dyn., 88, 2319-2327 (2017) · Zbl 1398.37068
[42] Tchokouansi, H. T.; Kuetche, V. K.; Kofane, T. C., On the propagation of solitons in ferrites: The inverse scattering approach, Chaos Solitons Fract., 86, 64-74 (2016) · Zbl 1360.35266
[43] Triki, H.; Wazwaz, A. M., New solitons and periodic wave solutions for the \(####\)-dimensional Heisenberg ferromagnetic spin chain equation, J. Electromagn. Waves Appl., 30, 788-794 (2016)
[44] Wang, Q. M.; Gao, Y. T.; Su, C. Q.; Mao, B. Q.; Gao, Z.; Yang, J. W., Dark solitonic interaction and conservation laws for a higher-order \(####\)-dimensional nonlinear Schrödinger-type equation in a Heisenberg ferromagnetic spin chain with bilinear and biquadratic interaction, Ann. Phys., 363, 440-456 (2015) · Zbl 1360.82057
[45] Wang, Y.; Song, L. J.; Li, L., Optical amplification and reshaping based on the Peregrine rogue wave, Appl. Opt., 55, 7241-7246 (2016)
[46] Yang, J. Y.; Yan, C. Y.; Diaz, M.; Huang, J. C.; Li, Z. H.; Zhang, H. X., Numerical solutions of ideal quantum gas dynamical flows governed by semiclassical ellipsoidal-statistical distribution, Proc. R. Soc. A Math. Phys. Eng. Sci., 470 (2014) · Zbl 1371.82091
[47] Zhao, Z. L.; He, L. C., M-lump, high-order breather solutions and interaction dynamics of a generalized \(####\)-dimensional nonlinear wave equation, Nonlinear Dyn., 100, 2753-2765 (2020) · Zbl 1516.37123
[48] Zhao, X. H.; Tian, B.; Liu, D. Y.; Wu, X. Y.; Chai, J.; Guo, Y. J., Dark solitons interaction for a \(####\)-dimensional nonlinear Schrödinger equation in the Heisenberg ferromagnetic spin chain, Supperlattice Microstruct., 100, 587-595 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.