×

Smooth hypersurfaces in abelian varieties over arithmetic rings. (English) Zbl 1499.14048

Summary: Let \(A\) be an abelian scheme of dimension at least four over a \(\mathbb{Z}\)-finitely generated integral domain \(R\) of characteristic zero, and let \(L\) be an ample line bundle on \(A\). We prove that the set of smooth hypersurfaces \(D\) in \(A\) representing \(L\) is finite by showing that the moduli stack of such hypersurfaces has only finitely many \(R\)-points. We accomplish this by using level structures to interpolate finiteness results between this moduli stack and the stack of canonically polarized varieties.

MSC:

14G99 Arithmetic problems in algebraic geometry; Diophantine geometry
14D23 Stacks and moduli problems
11G35 Varieties over global fields
14G05 Rational points
32Q45 Hyperbolic and Kobayashi hyperbolic manifolds

References:

[1] Alper, J., ‘Good moduli spaces for Artin stacks’, Ann. Inst. Fourier (Grenoble)63(6) (2013), 2349-2402. · Zbl 1314.14095
[2] André, Y., ‘On the Shafarevich and Tate conjectures for hyper-Kähler varieties’, Math. Ann.305(2) (1996), 205-248. · Zbl 0942.14018
[3] Brion, M., ‘Homomorphisms of algebraic groups: representability and rigidity’, Michigan Math. J.72 (2022), 51-76. · Zbl 1507.14066
[4] Demazure, M., Grothendieck, A., Artin, M., Bertin, J.-E., Gabriel, P., Raynaud, M. and Serre, J.-P., eds., ‘Séminaire de géométrie algébrique du Bois Marie 1962-64. Schémas en groupes (SGA 3). Tome I: Propriétés générales des schémas en groupes’, volume 7 of Doc. Math. (SMF), vol. 7 (Société Mathématique de France, Paris, 2011). New annotated edition of the 1970 original published bei Springer edition. · Zbl 1241.14002
[5] Debarre, O., Jiang, Z. and Lahoz, M., ‘Rational cohomology tori’, Geom. Topol.21(2) (2017), 1095-1130. With an appendix by Sawin, William F.. · Zbl 1378.32013
[6] Faltings, G., ‘Endlichkeitssätze für abelsche Varietäten über Zahlkörpern’, Invent. Math.73(3) (1983), 349-366. · Zbl 0588.14026
[7] Faltings, G. and Chai, C.-L., Degeneration of Abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge [A Series of Modern Surveys in Mathematics], vol. 22 (Springer-Verlag, Berlin, 1990), xii+316. · Zbl 0744.14031
[8] Fantechi, B., Göttsche, L., Illusie, L., Kleiman, S. L., Nitsure, N. and Vistoli, A., ‘Fundamental algebraic geometry: Grothendieck’s FGA explained’, in Mathematical Surveys and Monographs, 123 (American Mathematical Society, Providence, RI, 2005), x+339. · Zbl 1085.14001
[9] Grothendieck, A., Fondements de la géométrie algébrique (Secrétariat mathématique, Paris, 1962). · Zbl 0239.14002
[10] Grothendieck, A., ‘Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas (Quatrième partie). Rédigé avec la colloboration de Jean Dieudonné’, Publ. Math., Inst. Hautes Étud. Sci.32 (1967), 1-361. · Zbl 0153.22301
[11] Grothendieck, A., Cohomologie \(l\) -adique et fonctions \(L\) (SGA 5), Lecture Notes in Mathematics, vol. 589 (Springer-Verlag, Berlin-New York, 1977). Séminaire de Géometrie Algébrique du Bois-Marie 1965-1966.
[12] Geraschenko, A. and Satriano, M., ‘Torus quotients as global quotients by finite groups’, Journal of the London Mathematical Society92(3) (2015), 736-759. · Zbl 1351.14030
[13] Görtz, U. and Wedhorn, T.,‘Algebraic geometry I. Schemes-with examples and exercises’, in Springer Studium Mathematik—Master, second edition (Springer Spektrum, Wiesbaden, 2020), vii+625. https://doi.org/10.1007/978-3-658-30733-2. · Zbl 1444.14001
[14] Javanpeykar, A., ‘The Lang-Vojta conjectures on projective pseudo-hyperbolic varieties’, in Arithmetic Geometry of Logarithmic Pairs and Hyperbolicity of Moduli Spaces, CRM Short Courses (Springer, Cham, 2020), 135-196. · Zbl 1452.14017
[15] Javanpeykar, A., ‘Arithmetic hyperbolicity: Automorphisms and persistence’, Math. Ann.381(1-2) (2021), 439-457. · Zbl 1484.11146
[16] Javanpeykar, A. and Litt, D., ‘Integral points on algebraic subvarieties of period domains: From number fields to finitely generated fields’, Preprint, arXiv:1907.13536.
[17] Javanpeykar, A. and Loughran, D., ‘Complete intersections: Moduli, Torelli, and good reduction’, Math. Ann.368(3-4) (2017), 1191-1225. · Zbl 1427.11062
[18] Javanpeykar, A. and Loughran, D., ‘The moduli of smooth hypersurfaces with level structure’, Manuscripta Math.154(1-2) (2017), 13-22. · Zbl 1390.14042
[19] Javanpeykar, A. and Loughran, D., ‘Arithmetic hyperbolicity and a stacky Chevalley-Weil theorem’, J. Lond. Math. Soc. (2)103(3) (2021), 846-869. · Zbl 1493.14040
[20] Javanpeykar, A., Loughran, D. and Mathur, S., ‘Good reduction and cyclic covers’, J. Inst. Math. Jussieu, Preprint, arXiv:2009.01831.
[21] Javanpeykar, A., Sun, R. and Zuo, K., ‘The Shafarevich conjecture revisited: Finiteness of pointed families of polarized varieties’, Preprint, arXiv:2005.05933.
[22] Lang, S., ‘Hyperbolic and Diophantine analysis’, Bull. Amer. Math. Soc. (N.S.)14(2) (1986), 159-205. · Zbl 0602.14019
[23] Laumon, G. and Moret-Bailly, L., ‘Champs algébriques’, in Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge [A Series of Modern Surveys in Mathematics], vol. 39 (Springer-Verlag, Berlin, 2000). · Zbl 0945.14005
[24] Lawrence, B. and Sawin, W., ‘The Shafarevich conjecture for hypersurfaces in abelian varieties’, Preprint, arXiv:2004.09046.
[25] Lorenzini, D. and Schröer, S., ‘Moderately ramified actions in positive characteristic’, Math. Z.295(3-4) (2020), 1095-1142. · Zbl 1456.14006
[26] Laurent, B. and Schröer, S., ‘Para-abelian varieties and albanese maps’ (2021).
[27] Mumford, D., Fogarty, J. and Kirwan, F., ‘Geometric invariant theory’, in Ergebnisse der Mathematik und ihrer Grenzgebiete (2), third edn., vol. 34 (Springer-Verlag, Berlin, 1994). · Zbl 0797.14004
[28] Matsusaka, T. and Mumford, D., ‘Two fundamental theorems on deformations of polarized varieties’, Amer. J. Math.86 (1964), 668-684. · Zbl 0128.15505
[29] Mumford, D., ‘On the equations defining abelian varieties. I’, Invent. Math.1 (1966), 287-354. · Zbl 0219.14024
[30] Mumford, D., Abelian Varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5 (Hindustan Book Agency, New Delhi, 2008). Published for the Tata Institute of Fundamental Research, Bombay. · Zbl 1177.14001
[31] Noohi, B., ‘Fundamental groups of algebraic stacks’, J. Inst. Math. Jussieu3(1) (2004), 69-103. · Zbl 1052.14001
[32] Olsson, M., Compactifying Moduli Spaces for Abelian Varieties, Lecture Notes in Mathematics, vol. 1958 (Springer-Verlag, Berlin, 2008). · Zbl 1165.14004
[33] Olsson, M., ‘Compactifications of moduli of abelian varieties: An introduction’, in Current Developments in Algebraic Geometry, Math. Sci. Res. Inst. Publ., vol. 59 (Cambridge Univ. Press, Cambridge, 2012), 295-348. · Zbl 1263.14044
[34] Popp, H., ‘On moduli of algebraic varieties, III Fine moduli spaces’, Compositio Math., 31(3) (1975), 237-258. · Zbl 0351.14005
[35] Raynaud, M., Faisceaux amples sur les schémas en groupes et les espaces homogenes, Lecture Notes in Mathematics, vol. 119 (Springer, Berlin, 2006).
[36] Scholl, A. J., ‘A finiteness theorem for del Pezzo surfaces over algebraic number fields’, J. London Math. Soc. (2)32(1) (1985), 31-40. · Zbl 0546.14026
[37] Serre, J.-P., ‘Rigidité du foncteur de Jacobi d’échelon \(n\ge 3\) ’, in Séminaire Cartan, Exp. 17 (1960), appendix.
[38] Sernesi, E., Deformations of Algebraic Schemes, Grundlehren der Mathematischen Wissenschaften, vol. 334 (Springer-Verlag, Berlin, 2006). · Zbl 1102.14001
[39] The Stacks Project Authors, Stacks Project, 2015. http://stacks.math.columbia.edu.
[40] Silverberg, A. and Zarhin, Y. G., ‘Variations on a theme of Minkowski and Serre’, J. Pure Appl. Algebra111(1-3) (1996), 285-302. · Zbl 0885.14006
[41] Takamatsu, T., ‘On the Shafarevich conjecture for Enriques surfaces’, Math. Z.298(1-2) (2021), 489-495. · Zbl 1462.14041
[42] Viehweg, E., ‘Compactifications of smooth families and of moduli spaces of polarized manifolds’, Ann. of Math. (2)172(2) (2010), 809-910. · Zbl 1238.14009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.