×

On reflexive edge strength of generalized prism graphs. (English) Zbl 1499.05556

Summary: Let \(G\) be a connected, simple and undirected graph. The assignments \(\{0, 2, \dots, 2k_{v}\}\) to the vertices and \(\{1, 2, \dots, k_{e}\}\) to the edges of graph \(G\) are called total \(k\)-labelings, where \(k = \max\{k_e, 2k_{v}\}\). The total \(k\)-labeling is called an reflexive edge irregular \(k\)-labeling of the graph \(G\), if for every two different edges \(xy\) and \(x^\prime y^\prime\) of \(G\), one has \[ wt(xy)=f_{v}(x)+f_{e}(xy)+f_{v}(y) \neq wt(x^\prime y^\prime) = f_{v}(x^\prime) + f_{e}(x^\prime y^\prime) + f_{v}(y^\prime). \] The minimum \(k\) for which the graph \(G\) has an reflexive edge irregular \(k\)-labeling is called the reflexive edge strength of \(G\). In this paper we investigate the exact value of reflexive edge strength for generalized prism graphs.

MSC:

05C78 Graph labelling (graceful graphs, bandwidth, etc.)

References:

[1] A. Ahmad, M. Bača and M. Numan, On irregularity strength of disjoint union of friendship graphs, Electron. J. Graph Theory Appl. 1 (2) (2013), 100-108. · Zbl 1306.05210
[2] D. Amar and O. Togni, Irregularity strength of trees, Discrete Math. 190 (1998), 15-38. · Zbl 0956.05092
[3] M. Anholcer and C. Palmer, Irregular labelings of circulant graphs, Discrete Math. 312(23) (2012), 3461-3466. · Zbl 1257.05145
[4] F. Ashraf, M. Bača, A. Semaničová-Feňovčíková and S.W. Saputro, On cycle-irregularity strength of ladders and fan graphs, Electron. J. Graph Theory Appl. 8 (1) (2020), 181-194. · Zbl 1468.05254
[5] M. Bača, M. Irfan, J. Ryan, A. Semaničová-Feňovčíková and D. Tanna, Note on edge irreg-ular reflexive labelings of graphs, AKCE J. Graphs. Combin. 16(2) (2019), 145-157. · Zbl 1432.05090
[6] M. Bača, M. Irfan, J. Ryan, A. Semaničová-Feňovčíková and D. Tanna, On edge irregular reflexive labellings for the generalized friendship graphs, Mathematics 5(4) (2017), 67. · Zbl 1391.05221
[7] M. Bača, S. Jendrol ’, M. Miller and J. Ryan, Total irregular labelings, Discrete Math. 307 (2007), 1378-1388. · Zbl 1115.05079
[8] M. Bača, and M.K. Siddiqui, Total edge irregularity strength of generalized prism, Appl. Math. Comput. 235 (2014), 168-173. · Zbl 1334.05135
[9] S. Brandt, J. Miškuf and D. Rautenbach, On a conjecture about edge irregular total labellings, J. Graph Theory 57 (2008), 333-343. · Zbl 1188.05109
[10] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Cong. numer. 64 (1988), 187-192. · Zbl 0671.05060
[11] J.H. Dimitz, D.K. Garnick and A. Gyárfás, On the irregularity strength of the m × n grid, J. Graph Theory 16 (1992), 355-374. · Zbl 0771.05055
[12] A. Gyárfás, The irregularity strength of K m,m is 4 for odd m, Discrete Math. 71 (1998), 273-274. · Zbl 0681.05066
[13] D. Indriati, Widodo, I.E. Wijayanti, K.A. Sugeng and I. Rosyida, Totally irregular total label-ing of some caterpillar graphs, Electron. J. Graph Theory Appl. 8 (2) (2020), 247-254. · Zbl 1468.05264
[14] J. Ivančo and S. Jendrol ’, Total edge irregularity strength of trees, Discuss. Math. Graph Theory 26 (2006), 449-456. · Zbl 1135.05066
[15] S. Jendrol ’, J. Miškuf and R. Soták, Total edge irregularity strength of complete and complete bipartite graphs, Electron. Notes Discrete Math. 28 (2007), 281-285. · Zbl 1291.05175
[16] J. Lehel, Facts and quests on degree irregular assignment, Graph Theory, Combin. Appl., Wiley, New York, 1991, p.p. 765-782. · Zbl 0841.05052
[17] T. Nierhoff, A tight bound on the irregularity strength of graphs, SIAM J. Discrete Math. 13 (2000), 313-323. · Zbl 0947.05067
[18] J. Ryan, B. Munasinghe, A. Semaničová-Feňovčíková and D. Tanna, Reflexive irregular la-belings, submitted.
[19] M.K. Siddiqui, On the total edge irregularity strength of a categorical product of a cycle and a path, AKCE J. Graphs. Combin. 9(1) (2012), 43-52. · Zbl 1253.05124
[20] D. Tanna, J. Ryan and A. Semaničová-Feňovčíková, Edge irregular reflexive labeling of prisms and wheels, Australas. J. Comb. 69(3) (2017), 394-401. · Zbl 1375.05243
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.