×

The intersection problem for kite-GDDs of type \(2^u\). (English) Zbl 1499.05070

Summary: The intersection problem for kite-GDDs is the determination of all pairs \((T, s)\) such that there exists a pair of kite-GDDs \((X, \mathcal{H}, \mathcal{B}_1)\) and \((X,\mathcal{H},\mathcal{B}_2)\) of the same type \(T\) satisfying \(|\mathcal{B}_1\cap\mathcal{B}_2| = s\). In this paper the intersection problem for a pair of kite-GDDs of type \(2^u\) is investigated. Let \(J(u)=\{s: \exists \text{ a pair of kite-GDDs of type } 2^u \text{ intersecting in } s \text{ blocks}\}\); \(I(u)=\{0, 1, \dots, b_u-2, b_u\}\), where \(b_u=u(u-1)/2\) is the number of blocks of a kite-GDD of type \(2^u\). We show that for any positive integer \(u\geq 4\), \(J(u)=I(u)\) and \(J(3)= \{0, 3\}\).

MSC:

05B05 Combinatorial aspects of block designs
05B30 Other designs, configurations
05C51 Graph designs and isomorphic decomposition
Full Text: DOI

References:

[1] E. S. KRAMER, D. M. MESNER. Intersections among Steiner systems. J. Combinatorial Theory Ser. A, 1974, 16: 273-285. · Zbl 0282.05011
[2] C. C. LINDNER, A. ROSA. Steiner triple systems having a prescribed number of triples in common. Canadian J. Math., 1978, 30(4): 896. · Zbl 0384.05016
[3] C. J. COLBOURN, D. G. HOFFMAN, C. C. LINDNER. Intersections of S(2, 4, v) designs. Ars Combin., 1992, 33: 97-111. · Zbl 0767.05022
[4] E. J. BILLINGTON, D. L. KREHER. The intersection problem for small G-designs. Australas. J. Combin., 1995, 12: 239-258. · Zbl 0837.05034
[5] Yanxun CHANG, Tao FENG, G. LO FRAO. The triangle intersection problem for S(2, 4, v) designs. Discrete Math., 2010, 310(22): 3194-3205. · Zbl 1228.05101
[6] Yanxun CHANG, Tao FENG, G. LO FARO, et al. The triangle intersection numbers of a pair of disjoint S(2, 4, v)s. Discrete Math., 2010, 310(21): 3007-3017. · Zbl 1227.05192
[7] Yanxun CHANG, Tao FENG, G. LO FARO, et al. The fine triangle intersection problem for kite systems. Discrete Math., 2012, 312(3): 545-553. · Zbl 1238.05169
[8] Yanxun CHANG, Tao FENG, G. LO FARO, et al. Enumerations of (K 4 − e)-Designs with Small Orders. Quad. Mat., 28, Aracne, Rome, 2012.
[9] Yanxun CHANG, Tao FENG, G. LO FARO, et al. The fine triangle intersection problem for (K 4 −e)-designs. Discrete Math., 2011, 311(21): 2442-2462. · Zbl 1292.05054
[10] Yanxun CHANG, Tao FENG, G. LO FARO. The triangle intersection problem for S(2, 4, v) designs. Discrete Math., 2010, 310(22): 3194-3205. · Zbl 1228.05101
[11] Yanxun CHANG, G. LO FARO. The flower intersection problem for Kirkman triple systems. J. Statist. Plann. Inference, 2003, 110: 159-177. · Zbl 1036.05010
[12] D. G. HOFFMAN, C. C. LINDNER. The flower intersection problem for Steiner triple systems. Ann. Discrete Math., 1987, 34: 243-258. · Zbl 0675.05009
[13] A. ROSA. Intersection properties of Steiner systems. Ann. Discrete Math., 1980, 7: 115-128. · Zbl 0438.05013
[14] Guizhi ZHANG, Yanxun CHANG, Tao FENG. The flower intersection problem for S(2, 4, v)s. Discrete Math., 2014, 315: 75-82. · Zbl 1278.05032
[15] Guizhi ZHANG, Yanxun CHANG, Tao FENG. The fine triangle intersection problem for minimum kite coverings. Adv. Math. (China), 2013, 42(5): 676-690. · Zbl 1299.05029
[16] Guizhi ZHANG, Yanxun CHANG, Tao FENG. The fine triangle intersections for maximum kite packings. Acta Math. Sin. (Engl. Ser.), 2013, 29(5): 867-882. · Zbl 1263.05082
[17] R. A. R. BUTLER, D. G. HOFFMAN. Intersections of group divisible triple systems. Ars Combin., 1992, 34: 268-288. · Zbl 0770.05014
[18] Guizhi ZHANG, Yonghong AN, Tao FENG. The intersection problem for PBD(4, 7 * ). Util. Math., 2018, 107: 317-337. · Zbl 1395.05030
[19] Guizhi ZHANG, Yonghong AN. The intersection problem for S(2, 4, v)s with a common parallel class. Util. Math., 2020, 114: 147-165. · Zbl 1452.05013
[20] Gennian GE. Group Divisible Designs. in: CRC Handbook of Combinatorial Designs (C. J. Colbourn and J. H. Dinitz, eds), CRC Press, 2007, 255-260. · Zbl 1110.05306
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.