×

Higher order Bell polynomials and the relevant integer sequences. (English) Zbl 1499.05021

Summary: The recurrence relation for the coefficients of higher order Bell polynomials, i.e. of the Bell polynomials relevant to \(n\)th derivative of a multiple composite function, is proved. Therefore, starting from this recurrence relation and by using the computer algebra program Mathematica, some tables for complete higher order Bell polynomials and the relevant numbers are derived.

MSC:

05A10 Factorials, binomial coefficients, combinatorial functions
11P81 Elementary theory of partitions
26A06 One-variable calculus

Software:

OEIS; Mathematica
Full Text: DOI

References:

[1] G. E. Andrews: The Theory of Partitions. Cambridge University Press, 1998. · Zbl 0996.11002
[2] S. Barnard, J. M. Child: Higher Algebra. Macmillan & Co, London, 1965.
[3] E. T. Bell: Exponential polynomials. Annals of Mathematics, 35 (1934), 258-277. · JFM 60.0295.01
[4] E. T. Bell: The Iterated Exponential Integers. Annals of Mathematics, 39 (1938), 539-557. · JFM 64.0096.02
[5] A. Bernardini, P. E. Ricci: Bell polynomials and differential equations of Freud-type polynomials. Math. Comput. Modelling, 36 (2002), 1115-1119. · Zbl 1029.33003
[6] A. Bernardini, P. Natalini, P. E. Ricci: Multi-dimensional Bell polynomials of higher order. Comput. Math. Appl., 50 (2005), 1697-1708. · Zbl 1113.33025
[7] C. Cassisa, P. E. Ricci: Orthogonal invariants and the Bell polynomials. Rend. Mat. Appl., (7) 20 (2000), 293-303. · Zbl 1005.47027
[8] L. Comtet: Advanced Combinatorics. D. Reidel Publ. Co., 1974. · Zbl 0283.05001
[9] A. Di Cave, P. E. Ricci: Sui polinomi di Bell ed i numeri di Fibonacci e di Bernoulli. Le Matematiche, 35 (1980), 84-95. · Zbl 0534.33008
[10] F. Faà di Bruno: Théorie des formes binaires. Brero, Turin, 1876. · JFM 08.0056.02
[11] D. Fujiwara: Generalized Bell polynomials. Sugaku, 42 (1990), 89-90. · Zbl 0728.11016
[12] J. Ginsburg: Iterated exponentials. Scripta Math., 11 (1945), 340-353. · Zbl 0060.08415
[13] T. Isoni, P. Natalini, P. E. Ricci: Symbolic computation of Newton sum rules for the zeros of orthogonal polynomials. Proc. of the Workshop “Advanced Special Func-tions and Integration Methods”, Melfi (PZ), 2000, in Advanced Topics in Mathematics and Physics, Aracne Editrice Roma (2001), 97-112. · Zbl 1013.33009
[14] T. Isoni, P. Natalini, P. E. Ricci: Symbolic computation of Newton sum rules for the zeros of polynomial eigenfunctions of linear differential operators. Numerical Algorithms, 28 No. 1-4 (2001), 215-227. · Zbl 0997.65102
[15] P. Natalini, P. E. Ricci: An extension of the Bell polynomials. Comput. Math. Appl., 47 (2004), 719-725. · Zbl 1080.11019
[16] P. Natalini, P. E. Ricci: Laguerre-type Bell polynomials. Int. J. Math. Math. Sci., (2006), Art. ID 45423, 7 pp. · Zbl 1113.33012
[17] P. Natalini, P. E. Ricci: Bell polynomials and modified Bessel functions of half-integral order. Appl. Math. Comput., 268 (2015), 270-274. · Zbl 1410.11020
[18] P. Natalini, P. E. Ricci: Remarks on Bell and higher order Bell polynomials and numbers., Cogent Mathematics, (1) 3 (2016), 15 pp. · Zbl 1430.11035
[19] S. Noschese, P. E. Ricci: Differentiation of multivariable composite functions and Bell Polynomials. J. Comput. Anal. Appl., 5 (2003), 333-340. · Zbl 1090.26006
[20] P. N. Rai, S. N. Singh: Generalization of Bell polynomials and related operatorial formula. (In Hindi), Vijnana Parishad Anusandhan Patrika, 25 (1982), 251-258.
[21] J. Riordan: An Introduction to Combinatorial Analysis. J Wiley & Sons, Chichester, 1958. · Zbl 0078.00805
[22] D. Robert: Invariants orthogonaux pour certaines classes d’operateurs. Annales Mathém. pures appl., 52 (1973), 81-114. · Zbl 0226.47017
[23] S. M. Roman: The Faà di Bruno Formula. Amer. Math. Monthly, 87 (1980), 805-809. · Zbl 0513.05009
[24] S.M. Roman, G. C. Rota: The umbral calculus. Advanced in Math., 27 (1978), 95-188. · Zbl 0375.05007
[25] N. J. A. Sloane, S. Plouffe: The Encyclopedia of Integer Sequences, Academic Press, San Diego, 1995. · Zbl 0845.11001
[26] Pierpaolo Natalini (Received 19.07.2016.)
[27] Dipartimento di Matematica e Fisica -(Revised 20.03.2017.)
[28] Università degli Studi Roma Tre Largo San Leonardo Murialdo, 1 -00146 -Roma (Italia) E-mail: natalini@mat.uniroma3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.