×

Robust fractional-order perfect control for non-full rank plants described in the Grünwald-Letnikov IMC framework. (English) Zbl 1498.93439

Summary: The advanced analytical study in the field of fractional-order non-full rank inverse model control design is presented in the paper. Following the recent results in this matter it is certain, that the inverse model control-oriented perfect control law can be established for the non-full rank integer-order systems being under the discrete-time state-space reference with zero value. It is shown here, that the perfect control paradigm can be extended to cover the multivariable non-full rank plants governed by the more general Grünwald-Letnikov discrete-time state-space model. Indeed, the postulated approach significantly reduces both iterative and non-iterative computational effort, mainly derived from the approximation of the Moore-Penrose inverse of the non-full rank matrices to finally be inverted. A prevention provided by the new method excludes the detrimental matrix behavior in the form of singularity, often avoided due to the observed ill-conditioned sensitivity. Thus, the new defined robust fractional-order non-full rank instance of such control strategy, supported by the pole-free mechanism, gives rise to the introduction of the general unified non-full rank perfect control-originated theory. Numerical algorithms with simulation investigation clearly confirm the innovative peculiarities provided by the manuscript.

MSC:

93C55 Discrete-time control/observation systems
93B35 Sensitivity (robustness)
93C15 Control/observation systems governed by ordinary differential equations
15A09 Theory of matrix inversion and generalized inverses
Full Text: DOI

References:

[1] A.A. Ahmed, B.K. Koh, Y.I. Lee, A comparison of finite control set and continuous control set model predictive control schemes for speed control of induction motors. IEEE Trans. on Industrial Informatics 14, No 4 (2018), 1334-1346; DOI: 10.1109/TII.2017.2758393. · doi:10.1109/TII.2017.2758393
[2] A. Ben-Israel, T.N.E. Greville, Generalized Inverses: Theory and Applications. Springer, New York (2006).
[3] R. Bhattarai, N. Gurung, S. Kamalasadan, Minimum variance controller based adaptive control for Doubly fed induction generator. In: Proc. of the 2016 North American Power Symposium, Denver, CO, USA (2016), 1-6; DOI: 10.1109/NAPS.2016.7747913. · doi:10.1109/NAPS.2016.7747913
[4] R. Bisht, S. Subramaniam, R. Bhattarai, S. Kamalasadan, Adaptive minimum variance control of grid connected single phase inverters in synchronously rotating dq reference frame. In: Proc. of the 2018 IEEE Industry Applications Society Annual Meeting, Portland, OR, USA (2018), 1-10; DOI: 10.1109/IAS.2018.8544589. · doi:10.1109/IAS.2018.8544589
[5] Z. Chen, M. Yin, Y. Zou, K. Meng, Z. Dong, Maximum wind energy extraction for variable speed wind turbines with slow dynamic behavior. IEEE Trans. on Power Systems 32, No 4 (2017), 3321-3322; DOI: 10.1109/TPWRS.2016.2623981. · doi:10.1109/TPWRS.2016.2623981
[6] R. Cioć, Physical and geometrical interpretation of Grünwald-Letnikov differintegrals: Measurement of path and acceleration. Fract. Calc. Appl. Anal. 19, No 1 (2016), 161-172; DOI: 10.1515/fca-2016-0009; https://www.degruyter.com/journal/key/FCA/19/1/html. · Zbl 1339.26019 · doi:10.1515/fca-2016-0009
[7] C. Cubukcuoglu, A. Kirimtat, B. Ekici, F. Tasgetiren, P.N. Suganthan, Evolutionary Computation for Theatre Hall Acoustics. Springer International Publishing, Cham (2019)
[8] T. Feliks and W.P. Hunek, A new non-full rank algorithm for the imc-derived d-step mimo structures in the pole-free state space. IEEE Access 8 (2020), 121357-121365; DOI: 10.1109/ACCESS.2020.3006806. · doi:10.1109/ACCESS.2020.3006806
[9] A. Goldenshluger, L. Mirkin, On minimum-variance event-triggered control. IEEE Control Systems Letters 1, No 1 (2017), 32-37; DOI: 10.1109/LCSYS.2017.2700620. · doi:10.1109/LCSYS.2017.2700620
[10] M.J. Gomes Silva, C. Silva Araujo, S.T. Marques Bezerra, C. Rocha Souto, S. Arnaud Silva, H. Pimentel Gomes, Generalized minimum variance control for water distribution system. IEEE Latin America Transactions 13, No 3 (2015), 651-658; DOI: 10.1109/TLA.2015.7069088. · doi:10.1109/TLA.2015.7069088
[11] Y. Gui, C.H. Kim, C.C. Chung, Y. Kang, Intra-day unit commitment for wind farm using model predictive control method. In: 2013 IEEE Power Energy Society General Meeting, Vancouver, BC, Canada (2013), 1-5; DOI: 10.1109/PESMG.2013.6672813. · doi:10.1109/PESMG.2013.6672813
[12] W.P. Hunek, Perfect control for right-invertible Grünwald-Letnikov plants – an innovative approach to practical implementation. Fract. Calc. Appl. Anal. 22, No 2 (2019), 424-443; DOI: 10.1515/fca-2019-0026; https://www.degruyter.com/journal/key/FCA/22/2/html. · Zbl 1426.93174 · doi:10.1515/fca-2019-0026
[13] W.P. Hunek, Towards a General Theory of Control Zeros for LTI MIMO Systems. Opole University of Technology Press, Opole, Poland (2011). · Zbl 1291.93182
[14] W.P. Hunek, T. Feliks, A geometric-based approach to the maximum-speed state and output variables for some class of IMC structures. In: Proc. of the 6th IEEE Intern. Conf. on Control, Decision and Information Technologies, Paris, France (2019), 1385-1389; DOI: 10.1109/CoDIT.2019.8820536. · doi:10.1109/CoDIT.2019.8820536
[15] W.P. Hunek, T. Feliks, A new extension of inverse model control design to non-full rank state-space plants. In: Proc. of the 2020 European Control Conference, St. Petersburg, Russia (2020), 1783-1788; DOI: 10.23919/ECC51009.2020.9143669. · doi:10.23919/ECC51009.2020.9143669
[16] W.P. Hunek, T. Feliks, A new geometric-oriented minimum-energy perfect control design in the IMC-based state-space domain. IEEE Access 8 (2020), 41733-41739; DOI: 10.1109/ACCESS.2020.2977278. · doi:10.1109/ACCESS.2020.2977278
[17] W.P. Hunek, P. Majewski, Perfect reconstruction of signal – a new polynomial matrix inverse approach. EURASIP J. on Wireless Commun.and Networking 2018, No 1 (2018), 107; DOI: 10.1186/s13638-018-1122-5. · doi:10.1186/s13638-018-1122-5
[18] W.P. Hunek, L.Wach, A new stability theory for grünwald-letnikov inverse model control in the multivariable lti fractional-order framework. Symmetry 11, No 10 (2019), # 1322; DOI: 10.3390/sym11101322. · doi:10.3390/sym11101322
[19] A. Inoue, M. Deng, A. Yanou, T. Henmi, Multi-variable generalized minimum variance control with time-delay using interactor matrix. In: Proc. of the 2019 IEEE Intern. Conf. on Advanced Mechatronic Systems, Kusatsu, Japan (2019), 81-86; DOI: 10.1109/ICAMechS.2019.8861635. · doi:10.1109/ICAMechS.2019.8861635
[20] V. Kaminskas, E. Ščiglinskas, Minimum variance control of human emotion as reactions to a dynamic virtual 3D face. In: Proc.of the 4th Workshop on Advances in Information, Electr. and Electr. Engineering, Vilnius, Lithuania (2016), 1-5; DOI: 10.1109/AIEEE.2016.7821810. · doi:10.1109/AIEEE.2016.7821810
[21] V. Kiryakova, Generalized Fractional Calculus and Applications. Long-man Scientific & Technical, Harlow; and John Wiley & Sons, Inc., New York (1993).
[22] M. Kishida, R.D. Braatz, Inversion-based output regulation of chemotaxis using a constrained influx of chemical signaling molecules. In: 2013 American Control Conference, Washington, DC, USA (2013), 3443-3448; DOI: 10.1109/ACC.2013.6580363. · doi:10.1109/ACC.2013.6580363
[23] S. Lee, C.C. Chung, Reference redesigned perfect tracking control, with application to servo control system. In: Proc. of the 53rd IEEE Conf. on Decision and Control, Los Angeles, CA, USA (2014), 4542-4547; DOI: 10.1109/CDC.2014.7040098. · doi:10.1109/CDC.2014.7040098
[24] J. Li, M. Gan, A novel robust perfect tracking control method for nonlinear servo systems. In: Proc. of the 37th IEEE Chinese Control Conf., Wuhan, China (2018), 3790-3795; DOI: 10.23919/ChiCC.2018.8482835. · doi:10.23919/ChiCC.2018.8482835
[25] H. Ma, N. Li, P. Stanimirović, V.N. Katsikis, Perturbation theory for Moore-Penrose inverse of tensor via Einstein product. Computat. and Appl. Math. 38, No 111 (2019), 1-24; DOI: 10.1007/s40314-019-0893-6. · Zbl 1438.15008 · doi:10.1007/s40314-019-0893-6
[26] A. Mystkowski, A. Zolotas, PLC-based discrete fractional-order control design for an industrial-oriented water tank volume system with input delay. Fract. Calc. Appl. Anal. 21, No 4 (2018), 1005-1026; DOI: 10.1515/fca-2018-0055; https://www.degruyter.com/journal/key/FCA/21/4/html. · Zbl 1421.93062 · doi:10.1515/fca-2018-0055
[27] S. Okada, S. Masuda, Data-driven minimum variance control using regulatory closed-loop data based on the FRIT method. In: Proc. of the 56th Annual Conf. of the Soc. of Instrument and Control Engineers of Japan, Kanazawa, Japan (2017), 253-254; DOI: 10.23919/SICE.2017.8105758. · doi:10.23919/SICE.2017.8105758
[28] L. Qida, T. Shubin, Y. Yongkuan, Performance evaluation of generalized minimum variance multi-disturbance control system. In: Proc. of the 2019 IEEE Chinese Control And Decision Conf., Nanchang, China (2019), 3286-3290; DOI: 10.1109/CCDC.2019.8833345. · doi:10.1109/CCDC.2019.8833345
[29] M.-B. Radac, R.-E. Precup, Data-driven MIMO model-free reference tracking control with nonlinear state-feedback and fractional order controllers. Applied Soft Computing 73 (2018), 992-1003; DOI: 10.1016/j.asoc.2018.09.035. · doi:10.1016/j.asoc.2018.09.035
[30] P.N. Suganthan, Letter: On non-iterative learning algorithms with closed-form solution. Applied Soft Computing 70 (2018), 1078-1082; DOI: 10.1016/j.asoc.2018.07.013. · doi:10.1016/j.asoc.2018.07.013
[31] F. Vanhoenshoven, G. Nápoles, W. Froelich, J.L. Salmeron, K. Vanhoof, Pseudoinverse learning of Fuzzy Cognitive Maps for multivariate time series forecasting. Applied Soft Computing 95 (2020), # 106461; DOI: 10.1016/j.asoc.2020.106461. · doi:10.1016/j.asoc.2020.106461
[32] D. Wang, A. Wang, Y. Fu, J. Xiao, H. Liu, Robust nonlinear perfect control for semiconductor refrigeration device. In: Proc. of the 10th IEEE Intern. Conf. on Software, Knowledge, Information Management Applications, Chengdu, China (2016), 413-417; DOI: 10.1109/SKIMA.2016.7916257. · doi:10.1109/SKIMA.2016.7916257
[33] P. Yang, X. Zhou, H. Guo, Y. Zhou, Research on self-turning minimum variance control algorithm in non-minimum phase system. In: Proc. of the 15th IEEE Intern. Conf. on Networking, Sensing and Control, Zhuhai, China (2018), 1-5; DOI: 10.1109/ICNSC.2018.8361273. · doi:10.1109/ICNSC.2018.8361273
[34] R. Yokoyama, S. Masuda, Data-driven generalized minimum variance regulatory control with constrained controller structure. In: Proc. of the 2016 Intern. Conf. on Advanced Mechatronic Systems, Melbourne, VIC, Australia (2016), 17-22; DOI: 10.1109/ICAMechS.2016.7813414. · doi:10.1109/ICAMechS.2016.7813414
[35] W. Yunjie, W. Junfeng, L. Xiaodong, T. Dapeng, A new control method with perfect tracking control for flight simulator. In: Proc. of the 2011 IEEE Chinese Control and Decision Conf., Mianyang, China (2011), 2571-2576; DOI: 10.1109/CCDC.2011.5968644. · doi:10.1109/CCDC.2011.5968644
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.