×

Dynamics of lineages in adaptation to a gradual environmental change. (Dynamique des lignées ancestrales en réponse à des changements environnementaux.) (English) Zbl 1498.92129

Summary: We investigate a simple quantitative genetics model subject to a gradual environmental change from the viewpoint of the phylogenies of the living individuals. We aim to understand better how the past traits of their ancestors are shaped by the adaptation to the varying environment. The individuals are characterized by a one-dimensional trait. The dynamics – births and deaths – depend on a time-changing mortality rate that shifts the optimal trait to the right at constant speed. The population size is regulated by a nonlinear non-local logistic competition term. The macroscopic behaviour can be described by a PDE that admits a unique positive stationary solution. In the stationary regime, the population can persist, but with a lag in the trait distribution due to the environmental change. For the microscopic (individual-based) stochastic process, the evolution of the lineages can be traced back using the historical process, that is, a measure-valued process on the set of continuous real functions of time. Assuming stationarity of the trait distribution, we describe the limiting distribution, in large populations, of the path of an individual drawn at random at a given time \(T\). Freezing the non-linearity due to competition allows the use of a many-to-one identity together with Feynman-Kac’s formula. This path, in reversed time, remains close to a simple Ornstein-Uhlenbeck process. It shows how the lagged bulk of the present population stems from ancestors once optimal in trait but still in the tail of the trait distribution in which they lived.

MSC:

92D15 Problems related to evolution
60J85 Applications of branching processes
92D25 Population dynamics (general)
35Q92 PDEs in connection with biology, chemistry and other natural sciences

References:

[1] Alfaro, Matthieu; Berestycki, Henri; Raoul, Gaël, The effect of climate shift on a species submitted to dispersion, evolution, growth, and nonlocal competition, SIAM J. Math. Anal., 49, 1, 562-596 (2017) · Zbl 1364.35377 · doi:10.1137/16M1075934
[2] Anderson, Jill T.; Panetta, Anne Marie; Mitchell-Olds, Thomas, Evolutionary and ecological responses to anthropogenic climate change: update on anthropogenic climate change, Plant physiology, 160, 4, 1728-1740 (2012) · doi:10.1104/pp.112.206219
[3] Beerenwinkel, Niko; Antal, Tibor; Dingli, David; Traulsen, Arne; Kinzler, Kenneth W.; Velculescu, Victor E.; Vogelstein, Bert; Nowak, Martin A., Genetic progression and the waiting time to cancer, PLOS Comput. Biol., 3, 11, e225 (2007) · doi:10.1371/journal.pcbi.0030225
[4] Berestycki, Julien; Berestycki, Nathanaël; Schweinsberg, Jason, The genealogy of branching Brownian motion with absorption, Ann. Probab., 41, 2, 527-618 (2013) · Zbl 1304.60088
[5] Brunet, Éric; Derrida, Bernard, Genealogies in simple models of evolution, J. Stat. Mech. Theory Exp., 2013, 1 (2013) · Zbl 1456.92096
[6] Brunet, Éric; Derrida, Bernard; Mueller, Alfred H.; Munier, Stéphane, Effect of selection on ancestry: an exactly soluble case and its phenomenological generalization, Phys. Rev. E, 76, 4 (2007) · doi:10.1103/PhysRevE.76.041104
[7] Bansaye, Vincent; Delmas, Jean-François; Marsalle, Laurence; Tran, Viet Chi, Limit theorems for Markov processes indexed by continuous time Galton-Watson trees, Ann. Appl. Probab., 21, 6, 2263-2314 (2011) · Zbl 1235.60114
[8] Berestycki, Henri; Diekmann, Odo; Nagelkerke, Cornelis J.; Zegeling, Paul A., Can a species keep pace with a shifting climate?, Bull. Math. Biol., 71, 2, 399-429 (2009) · Zbl 1169.92043 · doi:10.1007/s11538-008-9367-5
[9] Berestycki, Nathanaël, Recent progress in coalescent theory, 16 (2009), Sociedade Brasileira de Matemática, Rio de Janeiro · Zbl 1204.60002
[10] Blancas, Airam; Gufler, Stephan; Kliem, Sandra; Tran, Viet Chi; Wakolbinger, Anton, Evolving genealogies for branching populations under selection and competition (2021)
[11] Bradshaw, William E.; Holzapfel, Christina M., Evolutionary response to rapid climate change, Science, 312, 5779, 1477-1478 (2006) · doi:10.1126/science.1127000
[12] Billingsley, Patrick, Convergence of probability measures (2013), John Wiley & Sons · Zbl 0944.60003
[13] Bürger, Reinhard; Lynch, Michael, Evolution and extinction in a changing environment: a quantitative-genetic analysis, Evolution, 49, 1, 151-163 (1995) · doi:10.1111/j.1558-5646.1995.tb05967.x
[14] Burrows, Michael T.; Schoeman, David S.; Buckley, Lauren B.; Moore, Pippa; Poloczanska, Elvira S.; Brander, Keith M.; Brown, Chris; Bruno, John F.; Duarte, Carlos M.; Halpern, Benjamin S., The pace of shifting climate in marine and terrestrial ecosystems, Science, 334, 6056, 652-655 (2011) · doi:10.1126/science.1210288
[15] Champagnat, Nicolas; Ferrière, Régis; Méléard, Sylvie, From individual stochastic processes to macroscopic models in adaptive evolution, Stoc. Models, 24, Suppl. 1, 2-44 (2008) · Zbl 1157.60339 · doi:10.1080/15326340802437710
[16] Cloez, Bertrand; Gabriel, Pierre, On an irreducibility type condition for the ergodicity of nonconservative semigroups, C. R. Math. Acad. Sci. Paris, 358, 6, 733-742 (2020) · Zbl 07267933
[17] Champagnat, Nicolas, A microscopic interpretation for adaptive dynamics trait substitution sequence models, Stochastic Processes Appl., 116, 8, 1127-1160 (2006) · Zbl 1100.60055 · doi:10.1016/j.spa.2006.01.004
[18] Champagnat, Nicolas; Méléard, Sylvie, Invasion and adaptive evolution for individual-based spatially structured populations, J. Math. Biol., 55, 2, 147-188 (2007) · Zbl 1129.60080 · doi:10.1007/s00285-007-0072-z
[19] Cloez, Bertrand, Limit theorems for some branching measure-valued processes, Adv. Appl. Probab., 49, 2, 549-580 (2017) · Zbl 1425.60075 · doi:10.1017/apr.2017.12
[20] Collot, Dorian; Nidelet, Thibault; Ramsayer, Johan; Martin, Olivier C.; Méléard, Sylvie; Dillmann, Christine; Sicard, Delphine; Legrand, Judith, Feedback between environment and traits under selection in a seasonal environment: consequences for experimental evolution, Proc. R. Soc. B., 285, 1876 (2018) · doi:10.1098/rspb.2018.0284
[21] Dawson, Donald A., École d’été de probabilités de Saint-Flour XXI-1991, Measure-valued Markov processes, 1-260 (1993), Springer · Zbl 0799.60080
[22] Desai, Michael M.; Fisher, Daniel S.; Murray, Andrew W., The speed of evolution and maintenance of variation in asexual populations, Current biology, 17, 5, 385-394 (2007) · doi:10.1016/j.cub.2007.01.072
[23] Donnelly, Peter; Kurtz, Thomas G., A countable representation of the Fleming-Viot measure-valued diffusion, Ann. Probab., 24, 2, 698-742 (1996) · Zbl 0869.60074
[24] Donnelly, Peter; Kurtz, Thomas G., Particle representations for measure-valued population models, Ann. Probab., 27, 1, 166-205 (1999) · Zbl 0956.60081
[25] Durrett, Rick; Mayberry, John, Traveling waves of selective sweeps, Ann. Appl. Probab., 21, 2, 699-744 (2011) · Zbl 1219.92037
[26] Dawson, Donald A.; Perkins, Edwin A., Historical processes, 454 (1991), American Mathematical Society · Zbl 0754.60062
[27] Desai, Michael M.; Walczak, Aleksandra M.; Fisher, Daniel S., Genetic diversity and the structure of genealogies in rapidly adapting populations, Genetics, 193, 2, 565-585 (2013) · doi:10.1534/genetics.112.147157
[28] Dynkin, Evgeniĭ B., Branching particle systems and superprocesses, Ann. Probab., 19, 3, 1157-1194 (1991) · Zbl 0732.60092
[29] Etheridge, Alison M.; Kurtz, Thomas G., Genealogical constructions of population models, Ann. Probab., 47, 4, 1827-1910 (2019) · Zbl 1466.60147
[30] Etheridge, Alison M., An introduction to superprocesses, 20 (2000), American Mathematical Society · Zbl 0971.60053
[31] Feynman, Richard Phillips, Feynman’s Thesis. A New Approach To Quantum Theory, Space-time approach to non-relativistic quantum mechanics, 71-109 (2005), World Scientific · doi:10.1142/9789812567635_0002
[32] Fournier, Nicolas; Méléard, Sylvie, A microscopic probabilistic description of a locally regulated population and macroscopic approximations, Ann. Appl. Probab., 14, 4, 1880-1919 (2004) · Zbl 1060.92055
[33] Fitzsimmons, Pat; Pitman, Jim; Yor, Marc, Markovian bridges: construction, Palm interpretation, and splicing, Seminar on Stochastic Processes, 1992, 33, 101-134 (1993), Springer · Zbl 0844.60054 · doi:10.1007/978-1-4612-0339-1_5
[34] Gorter, Florien A.; Aarts, Mark M. G.; Zwaan, Bas J.; de Visser, J. Arjan G. M., Dynamics of adaptation in experimental yeast populations exposed to gradual and abrupt change in heavy metal concentration, The American Naturalist, 187, 1, 110-119 (2016) · doi:10.1086/684104
[35] Guzella, Thiago S.; Dey, Snigdhadip; Chelo, Ivo M.; Pino-Querido, Ania; Pereira, Veronica F.; Proulx, Stephen R.; Teotónio, Henrique, Slower environmental change hinders adaptation from standing genetic variation, PLoS genetics, 14, 11 (2018) · doi:10.1371/journal.pgen.1007731
[36] Greven, Andreas; Pfaffelhuber, Peter; Winter, Anita, Convergence in distribution of random metric measure spaces \(( \Lambda \)-coalescent measure trees), Probab. Theory Relat. Fields, 145, 1-2, 285-322 (2009) · Zbl 1215.05161 · doi:10.1007/s00440-008-0169-3
[37] Gonzalez, Andrew; Ronce, Ophélie; Ferriere, Regis; Hochberg, Michael E., Evolutionary rescue: an emerging focus at the intersection between ecology and evolution, Phil. Trans. R. Soc. B, 368, 1610 (2013) · doi:10.1098/rstb.2012.0404
[38] Hendry, Andrew P.; Farrugia, Thomas J.; Kinnison, Michael T., Human influences on rates of phenotypic change in wild animal populations, Molecular ecology, 17, 1, 20-29 (2008) · doi:10.1111/j.1365-294X.2007.03428.x
[39] Hardy, Robert; Harris, Simon C., A new formulation of the spine approach to branching diffusions (2006) · Zbl 1114.60065
[40] Hardy, Robert; Harris, Simon C., Séminaire de probabilités XLII, 1979, A spine approach to branching diffusions with applications to L p-convergence of martingales, 281-330 (2009), Springer · Zbl 1193.60100 · doi:10.1007/978-3-642-01763-6_11
[41] Haussmann, Ulrich G.; Pardoux, Etienne, Time reversal of diffusions, Ann. Probab., 14, 1188-1205 (1986) · Zbl 0607.60065
[42] Harris, Simon C.; Roberts, Matthew I., The many-to-few lemma and multiple spines, Ann. Inst. Henri Poincaré, Probab. Stat., 53, 1, 226-242 (2017) · Zbl 1361.60076
[43] Hoffmann, Ary A.; Sgrò, Carla M., Climate change and evolutionary adaptation, Nature, 470, 7335, 479-485 (2011) · doi:10.1038/nature09670
[44] Ikeda, Nobuyuki; Watanabe, Shinzo, Stochastic differential equations and diffusion processes (2014), Elsevier · Zbl 0684.60040
[45] Kac, Mark, On distributions of certain Wiener functionals, Trans. Am. Math. Soc., 65, 1, 1-13 (1949) · Zbl 0032.03501
[46] Kac, Mark, On some connections between probability theory and differential and integral equations, Proceedings of the second Berkeley symposium on mathematical statistics and probability, 189-215 (1951) · Zbl 0045.07002
[47] Kliem, Sandra, A compact containment result for nonlinear historical superprocess approximations for population models with trait-dependence, Electron. J. Probab., 19 (2014) · Zbl 1329.60305
[48] Kurtz, Thomas G.; Lyons, Russell; Pemantle, Robin; Peres, Yuval, Classical and modern branching processes. Proceedings of the IMA workshop, Minneapolis, MN, USA, June 13-17, 1994, 84, A conceptual proof of the Kesten-Stigum theorem for multi-type branching processes, 181-185 (1997), Springer · Zbl 0868.60068
[49] Kessler, David A.; Levine, Herbert; Ridgway, Douglas; Tsimring, Lev S., Evolution on a smooth landscape, J. Stat. Phys., 87, 3-4, 519-544 (1997) · Zbl 0920.92018 · doi:10.1007/BF02181235
[50] Kopp, Michael; Matuszewski, Sebastian, Rapid evolution of quantitative traits: theoretical perspectives, Evolutionary Applications, 7, 1, 169-191 (2014) · doi:10.1111/eva.12127
[51] Kliem, Sandra; Winter, Anita, Evolving phylogenies of trait-dependent branching with mutation and competition, Part I: Existence, Stochastic Processes Appl., 129, 12, 4837-4877 (2019) · Zbl 1427.60204 · doi:10.1016/j.spa.2018.07.011
[52] Lepers, Clotilde; Billiard, Sylvain; Porte, Matthieu; Méléard, Sylvie; Tran, Viet Chi, Inference with selection, varying population size, and evolving population structure: application of ABC to a forward-backward coalescent process with interactions, Heredity, 126, 2, 335-350 (2021) · doi:10.1038/s41437-020-00381-x
[53] Loarie, Scott R.; Duffy, Philip B.; Hamilton, Healy; Asner, Gregory P.; Field, Christopher B.; Ackerly, David D., The velocity of climate change, Nature, 462, 7276, 1052-1055 (2009) · doi:10.1038/nature08649
[54] Le Gall, Jean-François, Random trees and applications, Probab. Surv., 2, 245-311 (2005) · Zbl 1189.60161
[55] Lynch, Michael; Gabriel, Wilfred; Wood, A. Michelle, Adaptive and demographic responses of plankton populations to environmental change, Limnology and Oceanography, 36, 7, 1301-1312 (1991) · doi:10.4319/lo.1991.36.7.130
[56] Lynch, Michael; Lande, Russel, Evolution and extinction in response to environmental change, Biotic interactions and global change, 234-250 (1993), Sinauer Assoc.
[57] Lyons, Russell; Pemantle, Robin; Peres, Yuval, Conceptual proofs of L log L criteria for mean behavior of branching processes, Ann. Probab., 23, 3, 1125-1138 (1995) · Zbl 0840.60077
[58] Lande, Russell; Shannon, Susan, The role of genetic variation in adaptation and population persistence in a changing environment, Evolution, 50, 1, 434-437 (1996) · doi:10.2307/2410812
[59] Marguet, Aline, A law of large numbers for branching Markov processes by the ergodicity of ancestral lineages, ESAIM, Probab. Stat., 23, 638-661 (2019) · Zbl 1506.60097 · doi:10.1051/ps/2018029
[60] Marguet, Aline, Uniform sampling in a structured branching population, Bernoulli, 25, 4, 2649-2695 (2019) · Zbl 1428.62377 · doi:10.3150/18-BEJ1066
[61] Méléard, Sylvie; Tran, Viet Chi, Nonlinear historical superprocess approximations for population models with past dependence, Electron. J. Probab., 17 (2012) · Zbl 1258.60051
[62] Neher, Richard A.; Hallatschek, Oskar, Genealogies of rapidly adapting populations, Proceedings of the National Academy of Sciences, 110, 2, 437-442 (2013) · doi:10.1073/pnas.1213113110
[63] Parmesan, Camille, Ecological and evolutionary responses to recent climate change, Annu. Rev. Ecol. Evol. Syst., 37, 637-669 (2006) · doi:10.1146/annurev.ecolsys.37.091305.110100
[64] Perkins, Edwin A., On the martingale problem for interactive measure-valued branching diffusions, 549 (1995), American Mathematical Society · Zbl 0823.60071
[65] Perkins, Edwin A., Lectures on probability theory and statistics. . École d’été de probabilités de Saint-Flour XXIX - 1999, Saint-Flour, France, July 8-24, 1999, Dawson-Watanabe superprocesses and measure-valued diffusions, 125-329 (2002), Springer · Zbl 1020.60075
[66] Patout, Florian; Forien, Raphaël; Garnier, Jimmy, Ancestral lineages in mutation-selection equilibria with moving optimum (2020) · Zbl 1497.92176
[67] Potapov, Alex B.; Lewis, Mark A., Climate and competition: the effect of moving range boundaries on habitat invasibility, Bull. Math. Biol., 66, 5, 975-1008 (2004) · Zbl 1334.92454 · doi:10.1016/j.bulm.2003.10.010
[68] Park, Su-Chan; Simon, Damien; Krug, Joachim, The speed of evolution in large asexual populations, J. Stat. Phys., 138, 1-3, 381-410 (2010) · Zbl 1187.82112 · doi:10.1007/s10955-009-9915-x
[69] Roques, Lionel; Garnier, Jimmy; Hamel, François; Klein, Etienne K., Allee effect promotes diversity in traveling waves of colonization, Proceedings of the National Academy of Sciences, 109, 23, 8828-8833 (2012) · doi:10.1073/pnas.1201695109
[70] Roques, Lionel; Patout, Florian; Bonnefon, Olivier; Martin, Guillaume, Adaptation in general temporally changing environments, SIAM J. Appl. Math., 80, 6, 2420-2447 (2020) · Zbl 1454.35400 · doi:10.1137/20M1322893
[71] Rouzine, Igor M.; Wakeley, John; Coffin, John M., The solitary wave of asexual evolution, Proceedings of the National Academy of Sciences, 100, 2, 587-592 (2003) · doi:10.1073/pnas.242719299
[72] Schweinsberg, Jason, Rigorous results for a population model with selection I: evolution of the fitness distribution, Electron. J. Probab., 22 (2017) · Zbl 1362.92065
[73] Schweinsberg, Jason, Rigorous results for a population model with selection II: genealogy of the population, Electron. J. Probab., 22 (2017) · Zbl 1362.92066
[74] Sheldon, Kimberly S., Climate change in the tropics: ecological and evolutionary responses at low latitudes, Annual Review of Ecology, Evolution, and Systematics, 50, 303-333 (2019) · doi:10.1146/annurev-ecolsys-110218-025005
[75] Tsimring, Lev S.; Levine, Herbert; Kessler, David A., RNA virus evolution via a fitness-space model, Phys. Rev. Lett., 76, 23, 4440-4443 (1996) · doi:10.1103/PhysRevLett.76.4440
[76] Tran, Viet Chi, Une ballade en forêts aléatoires (2014)
[77] Wenocur, Michael L., Brownian motion with quadratic killing and some implications, J. Appl. Probab., 23, 4, 893-903 (1986) · Zbl 0617.60082 · doi:10.2307/3214463
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.