×

On the buckling load estimation of grid-stiffened composite conical shells using vibration correlation technique. (English) Zbl 1498.74033

Summary: In this paper, the vibration correlation technique (VCT) has been used as a nondestructive method for predicting the buckling load of grid-stiffened composite conical shells. This technique is capable of predicting the buckling load of structures without reaching failure point through modal testing. The grid-stiffened composite conical shell has been fabricated using the filament winding process. To perform the experiment, the fundamental natural frequency of the specimen is measured under stepped axial compression loading. The procedure is followed up without actually reaching the instability point when the structure collapses and is no longer usable. A finite element model has been built using ABAQUS software considering the effect of geometric imperfection in order to determine the correlation between natural frequency and applied compressive load. A comparison of the experimental and numerical approaches indicated that the difference between numerical buckling loads and those obtained via the VCT is negligible. Moreover, the VCT has provided a reliable estimate of the buckling load, especially when the maximum applied load is greater than 67% of the experimental buckling load.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74H60 Dynamical bifurcation of solutions to dynamical problems in solid mechanics
74K25 Shells
74E30 Composite and mixture properties
74S05 Finite element methods applied to problems in solid mechanics
74-05 Experimental work for problems pertaining to mechanics of deformable solids
74G60 Bifurcation and buckling

Software:

ABAQUS
Full Text: DOI

References:

[1] Abramovich, H.; Govich, D.; Grunwald, A., Buckling prediction of panels using the vibration correlation technique, Prog. Aero. Sci., 78, 62-73 (2015)
[2] Arbelo, M. A.; de Almeida, S. F.M.; Donadon, M. V.; Rett, S. R.; Degenhardt, R.; Castro, S. G.P., Vibration correlation technique for the estimation of real boundary conditions and buckling load of unstiffened plates and cylindrical shells, Thin-Walled Struct., 79, 119-128 (2014)
[3] Arbelo, M. A.; Kalnins, K.; Ozolins, O.; Skukis, E.; Castro, S. G.P.; Degenhardt, R., Experimental and numerical estimation of buckling load on unstiffened cylindrical shells using a vibration correlation technique, Thin-Walled Struct., 94, 273-279 (2015)
[4] Duc, N. D., Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy’s third-order shear deformation shell theory, Eur. J. Mech. Solid., 58, 10-30 (2016) · Zbl 1406.74468
[5] Franzoni, F.; Odermann, F.; Wilckens, D.; Skuķis, E.; Kalniņš, K.; Arbelo, M. A., Assessing the axial buckling load of a pressurized orthotropic cylindrical shell through vibration correlation technique, Thin-Walled Struct., 137, 353-366 (2019)
[6] Franzoni, F.; Odermann, F.; Lanbans, E.; Bisagni, C.; Andrés Arbelo, M.; Degenhardt, R., Experimental validation of the vibration correlation technique robustness to predict buckling of unstiffened composite cylindrical shells, Compos. Struct., 224, 111107 (2019)
[7] Franzoni, F.; Degenhardt, R.; Albus, J.; Arbelo, M., Vibration correlation technique for predicting the buckling load of imperfection-sensitive isotropic cylindrical shells: an analytical and numerical verification, Thin-Walled Struct., 140, 236-247 (2019)
[8] Hao, P.; Yuan, X.; Liu, H.; Wang, B.; Liu, C.; Yang, D.; Zhan, S., Isogeometric buckling analysis of composite variable-stiffness panels, Compos. Struct., 165, 192-208 (2017)
[9] Hao, P.; Yuan, X.; Liu, C.; Wang, B.; Liu, H.; Li, G.; Niu, F., An integrated framework of exact modeling, isogeometric analysis and optimization for variable-stiffness composite panels, Comput. Methods Appl. Mech. Eng., 339, 205-238 (2018) · Zbl 1440.74399
[10] Hemmatnezhad, M.; Rahimi, G. H.; Ansari, R., On the free vibrations of grid-stiffened composite cylindrical shells, Acta Mech., 225, 609-623 (2014) · Zbl 1401.74198
[11] Hemmatnezhad, M.; Rahimi, G. H.; Tajik, M.; Pellicano, F., Experimental, numerical and analytical investigation of free vibrational behavior of GFRP-stiffened composite cylindrical shells, Compos. Struct., 120, 509-518 (2015)
[12] Ilanko, S.; Dickinson, S. M., The vibration and post-buckling of geometrically imperfect, simply supported, rectangular plates under uni-axial loading, part I: theoretical approach, J. Sound Vib., 118, 313-336 (1987)
[13] Ilanko, S.; Dickinson, S. M., The vibration and post-buckling of geometrically imperfect, simply supported, rectangular plates under uni-axial loading, part II: experimental investigation, J. Sound Vib., 118, 337-351 (1987)
[14] Jansen, E. L.; Abramovich, H.; Rolfes, R., The direct prediction of buckling loads of shells under axial compression using VCT-towards an upgraded approach, (Proceedings of the 27th Congress of the (2014), International Council of the Aeronautical Sciences)
[15] Jubb, J. E.M.; Phillips, I. G.; Becker, H., Interrelation of structural stability, stiffness, residual stress and natural frequency, J. Sound Vib., 39, 121-134 (1975)
[16] Kalnins, K.; Arbelo, M. A.; Ozolins, O.; Skukis, E.; Castro, S. G.P.; Degenhardt, R., Experimental nondestructive test for estimation of buckling load on unstiffened cylindrical shells using vibration correlation technique, Shock Vib., 2015, Article e729684 pp. (2015)
[17] Kidane, S.; Li, G.; Helms, J.; Pang, S.-S.; Woldesenbet, E., Buckling load analysis of grid stiffened composite cylinders, Compos. B Eng., 34, 1-9 (2003)
[18] Li, M.; Fan, H., Free vibration behaviors and vibration correlation technique of hierarchical Isogrid stiffened composite cylinders, Thin-Walled Struct., 107321 (2020)
[19] Morozov, E. V.; Lopatin, A. V.; Nesterov, V. A., Buckling analysis and design of anisogrid composite lattice conical shells, Compos. Struct., 93, 3150-3162 (2011)
[20] Rosen, A.; Singer, J., Vibrations of axially loaded stiffened cylindrical shells, J. Sound Vib., 34 (1974), 357-IN3 · Zbl 0277.73076
[21] Rosen, A.; Singer, J., Vibrations and buckling of axially loaded stiffened cylindrical shells with elastic restraints, Int. J. Solid Struct., 12, 577-588 (1976) · Zbl 0332.73086
[22] Shahgholian-Ghahfarokhi, D.; Rahimi, G., Buckling load prediction of grid-stiffened composite cylindrical shells using the vibration correlation technique, Compos. Sci. Technol., 167, 470-481 (2018)
[23] Shahgholian-Ghahfarokhi, D.; Rahimi, G.; Liaghat, G.; Degenhardt, R.; Franzoni, F., Buckling prediction of composite lattice sandwich cylinders (CLSC) through the vibration correlation technique (VCT): numerical assessment with experimental and analytical verification, Compos. B Eng., 199, 108252 (2020)
[24] Shi, S.; Sun, Z.; Ren, M.; Chen, H.; Hu, X., Buckling resistance of grid-stiffened carbon-fiber thin-shell structures, Compos. B Eng., 45, 888-896 (2013)
[25] Skukis, E.; Kalnins, K.; Chate, A., Preliminary assessment of correlation between vibrations and buckling load of stainless steel cylinders, Shell Struct.: Theor. Appl. Proc. 10th SSTA 2013 Conf., 3, 325-328 (2014)
[26] Sommerfeld, A., Eine einfache Vorrichtung zur Veranschaulichung des Knickungsvorganges, Z. Verein Dtsch. Ingenieure, 1320-1323 (1905)
[27] Souza, M. A.; Fok, W. C.; Walker, A. C., Review of experimental techniques for thin-walled structures liable to buckling: neutral and unstable buckling, Exp. Tech., 7, 21-25 (2008)
[28] Tian, K.; Huang, L.; Sun, Y.; Du, K.; Hao, P.; Wang, B., Fast buckling load numerical prediction method for imperfect shells under axial compression based on POD and vibration correlation technique, Compos. Struct., 252, 112721 (2020)
[29] Totaro, G., Flexural, torsional, and axial global stiffness properties of anisogrid lattice conical shells in composite material, Compos. Struct., 153 (2016)
[30] Van Dung, D.; Chan, D. Q., Analytical investigation on mechanical buckling of FGM truncated conical shells reinforced by orthogonal stiffeners based on FSDT, Compos. Struct., 159, 827-841 (2017)
[31] Vasiliev, V. V.; Barynin, V. A.; Razin, A. F., Anisogrid composite lattice structures - development and aerospace applications, Compos. Struct., 94, 1117-1127 (2012)
[32] Wang, B.; Zhu, S.; Hao, P.; Bi, X.; Du, K.; Chen, B.; Ma, X.; Chao, Y. J.; ik, International journal of solids and structures (2018), 232, 247 · doi:10.1016/j.ijsolstr.2017.09.029
[33] Zarei, M.; Rahimi, G. H.; Hemmatnezhad, M., Free vibrational characteristics of grid-stiffened truncated composite conical shells, Aero. Sci. Technol., 99, 105717 (2020)
[34] Zarei, M.; Rahimi, G. H.; Hemmatnezhad, M., On the free vibrations of joined grid-stiffened composite conical-cylindrical shells, Thin-Walled Struct., 161, 107465 (2021)
[35] Zarei, M.; Rahimi, G. H.; Hemmatnezhad, M., On the buckling resistance of grid-stiffened composite conical shells under compression, Eng. Struct., 23, 112213 (2021)
[36] Zimmermann, R., Buckling research for imperfection tolerant fiber composite structures, (Spacecraft Structures, Materials and Mechanical Engineering, 386 (1996)), 411
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.