×

Convergence of the balanced Euler method for a class of stochastic Volterra integro-differential equations with non-globally Lipschitz continuous coefficients. (English) Zbl 1498.65026

Summary: In this paper, we propose the balanced Euler method of a class of stochastic Volterra integro-differential equations with non-globally Lipschitz continuous coefficients. The moment boundedness and strong convergence are shown. Moreover, the theoretical results are illustrated by some numerical examples.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
60H20 Stochastic integral equations
65R20 Numerical methods for integral equations
45R05 Random integral equations
45D05 Volterra integral equations
Full Text: DOI

References:

[1] Cardone, A.; Conte, D.; D’Ambrosio, R.; Paternoster, B., Stability issues for selected stochastic evolutionary problems: a review, Axioms, 7, 4, 91 (2018) · Zbl 1432.65009
[2] Conte, D.; D’Ambrosio, R.; Paternoster, B., On the stability of theta-methods for stochastic Volterra integral equations, Discrete Contin. Dyn. Syst., Ser. B, 23, 7, 2695-2708 (2018) · Zbl 1398.65348
[3] Higham, D. J.; Mao, X.; Stuart, A. M., Strong convergence of Euler-type methods for nonlinear stochastic differential equations, SIAM J. Numer. Anal., 40, 3, 1041-1063 (2002) · Zbl 1026.65003
[4] Hu, P.; Huang, C. M., Stability of Euler-Maruyama method for linear stochastic delay integro-differential equations, Math. Numer. Sin., 32, 1, 105-112 (2010) · Zbl 1224.65011
[5] Hu, P.; Huang, C. M., Stability of stochastic θ-methods for stochastic delay integro-differential equations, Int. J. Comput. Math., 88, 7, 1417-1429 (2011) · Zbl 1222.65010
[6] Hu, P.; Huang, C. M., The stochastic Θ-method for nonlinear stochastic Volterra integro-differential equations, Abstr. Appl. Anal., 2014, 1, Article 137 pp. (2014)
[7] Hutzenthaler, M.; Jentzen, A.; Kloeden, P. E., Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients, Proc. R. Soc. A, Math. Phys., 467, 2130, 1563-1576 (2011) · Zbl 1228.65014
[8] Hutzenthaler, M.; Jentzen, A.; Kloeden, P. E., Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients, Ann. Appl. Probab., 22, 4, 1611-1641 (2012) · Zbl 1256.65003
[9] Kloeden, P. E.; Platen, E., Numerical Solution of Stochastic Differential Equations (1992), Springer-Verlag: Springer-Verlag New York · Zbl 0925.65261
[10] Liang, H.; Yang, Z. W.; Gao, J. F., Strong superconvergence of Euler-Maruyama method for linear stochastic Volterral integral equations, J. Comput. Appl. Math., 317, 447-457 (2017) · Zbl 1357.65011
[11] Mao, X., Stability of stochastic integro-differential equations, Stoch. Anal. Appl., 18, 6, 1005-1017 (2000) · Zbl 0969.60068
[12] Mao, X.; Riedle, M., Mean square stability of stochastic Volterra integro-differential equations, Syst. Control Lett., 55, 6, 459-465 (2006) · Zbl 1129.34332
[13] Mao, X., Stochastic Differential Equations and Applications (2007), Horwood: Horwood Chichester, UK · Zbl 1138.60005
[14] Mao, X., The truncated Euler-Maruyama method for stochastic differential equations, J. Comput. Appl. Math., 290, 370-384 (2015) · Zbl 1330.65016
[15] Mao, X., Convergence rates of the truncated Euler-Maruyama method for stochastic differential equations, J. Comput. Appl. Math., 296, 362-375 (2016) · Zbl 1378.65036
[16] Muhammad, S.; Muhammad, S.; Kamal, S.; Poom, K., Fixed point results and its applications to the systems of non-linear integral and differential equations of arbitrary order, J. Nonlinear Sci. Appl., 9, 4949-4962 (2016) · Zbl 1470.54114
[17] Song, M.; Hu, L.; Mao, X.; Zhang, L., Khasminskii-type theorems for stochastic functional differential equations, Discrete Contin. Dyn. Syst., Ser. B, 18, 6, 1697-1714 (2013) · Zbl 1281.34128
[18] Szynal, D.; Wedrychowicz, S., On solutions of a stochastic integral equation of the Volterra type with applications for chemotherapy, J. Appl. Probab., 25, 257-267 (1988) · Zbl 0643.60048
[19] Tretyakov, M. V.; Zhang, Z., A fundamental mean-square convergence theorem for SDEs with locally Lipschitz coefficients and its applications, SIAM J. Numer. Anal., 51, 6, 3135-3162 (2013) · Zbl 1293.60069
[20] Wen, C. H.; Zhang, T. S., Rectangular method on stochastic Volterra equations, Int. J. Appl. Math. Stat., 14, J09, 12-26 (2009)
[21] Wen, C. H.; Zhang, T. S., Improved rectangular method on stochastic Volterra equations, J. Comput. Appl. Math., 235, 8, 2492-2501 (2011) · Zbl 1221.65023
[22] Wu, Q.; Hu, L.; Zhang, Z., Convergence and stability of balanced methods for stochastic delay integro-differential equations, Appl. Math. Comput., 237, 11, 446-460 (2014) · Zbl 1334.65017
[23] Zhang, W.; Song, M. H.; Liu, M. Z., Strong convergence of the partially truncated Euler-Maruyama method for a class of stochastic differential delay equations, J. Comput. Appl. Math., 335, 114-128 (2018) · Zbl 1444.34099
[24] Zhang, Z. Q.; Ma, H. P., Order-preserving strong schemes for SDEs with locally Lipschitz coefficients, Appl. Numer. Math., 112, 1-16 (2017) · Zbl 1354.65017
[25] Zhang, W.; Liang, H., Theoretical and numerical analysis of the Euler-Maruyama method for generalized stochastic Volterra integro-differential equations, J. Comput. Appl. Math., 365, Article 112364 pp. (2020) · Zbl 1524.65047
[26] Zhang, W., Theoretical and numerical analysis of a class of stochastic Volterra integro-differential equations with non-globally Lipschitz continuous coefficients, Appl. Numer. Math., 147, 254-276 (2020) · Zbl 1448.65012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.