×

Markov-modulated Hawkes processes for modeling sporadic and bursty event occurrences in social interactions. (English) Zbl 1498.62328

Summary: Modeling event dynamics is central to many disciplines. Patterns in observed social interaction events can be commonly modeled using point processes. Such social interaction event data often exhibit self-exciting, heterogeneous and sporadic trends which is challenging for conventional models. It is reasonable to assume that there exists a hidden state process that drives different event dynamics at different states. In this paper we propose a Markov modulated Hawkes process (MMHP) model for learning such a mixture of social interaction event dynamics and develop corresponding inference algorithms. Numerical experiments using synthetic data demonstrate that MMHP with the proposed estimation algorithms consistently recover the true hidden state process in simulations, while email data from a large university and data from an animal behavior study show that the procedure captures distinct event dynamics that reveal interesting social structures in the real data.

MSC:

62P25 Applications of statistics to social sciences
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
62F15 Bayesian inference

References:

[1] BARABASI, A.-L. (2005). The origin of bursts and heavy tails in human dynamics. Nature 435 207-211.
[2] Blei, D. M., Kucukelbir, A. and McAuliffe, J. D. (2017). Variational inference: A review for statisticians. J. Amer. Statist. Assoc. 112 859-877. · doi:10.1080/01621459.2017.1285773
[3] BLEI, D. M. and LAFFERTY, J. D. (2006). Dynamic topic models. In Proceedings of the 23rd International Conference on Machine Learning 113-120. ACM, New York.
[4] BROWN, E. N., BARBIERI, R., VENTURA, V., KASS, R. E. and FRANK, L. M. (2002). The time-rescaling theorem and its application to neural spike train data analysis. Neural Comput. 14 325-346. · Zbl 0989.62060
[5] COHN, I., EL-HAY, T., FRIEDMAN, N. and KUPFERMAN, R. (2009). Mean field variational approximation for continuous-time Bayesian networks. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence 91-100. AUAI Press. · Zbl 1242.68215
[6] Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39 1-38. · Zbl 0364.62022
[7] DU, N., FARAJTABAR, M., AHMED, A., SMOLA, A. J. and SONG, L. (2015). Dirichlet-Hawkes processes with applications to clustering continuous-time document streams. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 219-228.
[8] FISCHER, W. and MEIER-HELLSTERN, K. (1993). The Markov-modulated Poisson process (MMPP) cookbook. Perform. Eval. 18 149-171. · Zbl 0781.60098 · doi:10.1016/0166-5316(93)90035-S
[9] FORNEY, G. D. JR. (1973). The Viterbi algorithm. Proc. IEEE 61 268-278.
[10] Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A. and Rubin, D. B. (2014). Bayesian Data Analysis, 3rd ed. Texts in Statistical Science Series. CRC Press, Boca Raton, FL. · Zbl 1279.62004
[11] GUO, J., BETANCOURT, M., BRUBAKER, M., CARPENTER, B., GOODRICH, B., HOFFMAN, M., LEE, D., MALECKI, M. and GELMAN, A. (2014). RStan: The R interface to Stan.
[12] Hawkes, A. G. (1971). Spectra of some self-exciting and mutually exciting point processes. Biometrika 58 83-90. · Zbl 0219.60029 · doi:10.1093/biomet/58.1.83
[13] HAWKES, A. G. (2018). Hawkes processes and their applications to finance: A review. Quant. Finance 18 193-198. · doi:10.1080/14697688.2017.1403131
[14] KOSSINETS, G. and WATTS, D. J. (2006). Empirical analysis of an evolving social network. Science 311 88-90. · Zbl 1226.91055 · doi:10.1126/science.1116869
[15] Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. Ann. Math. Stat. 22 79-86. · Zbl 0042.38403 · doi:10.1214/aoms/1177729694
[16] LEIVA, D., SOLANAS, A. and SALAFRANCA, L. (2008). Testing reciprocity in social interactions: A comparison between the directional consistency and skew-symmetry statistics. Behav. Res. Methods 40 626-634.
[17] LINDERMAN, S. and ADAMS, R. (2014). Discovering latent network structure in point process data. In International Conference on Machine Learning 1413-1421.
[18] LIU, Y., GELMAN, A. and ZHENG, T. (2015). Simulation-efficient shortest probability intervals. Stat. Comput. 25 809-819. · Zbl 1331.62154 · doi:10.1007/s11222-015-9563-8
[19] MCDONALD, D. B. and SHIZUKA, D. (2012). Comparative transitive and temporal orderliness in dominance networks. Behav. Ecol. 24 511-520.
[20] OGATA, Y. (1981). On Lewis’ simulation method for point processes. IEEE Trans. Inf. Theory 27 23-31. · Zbl 0449.60037
[21] PERRY, P. O. and WOLFE, P. J. (2013). Point process modelling for directed interaction networks. J. R. Stat. Soc. Ser. B. Stat. Methodol. 75 821-849. · Zbl 1411.60076 · doi:10.1111/rssb.12013
[22] Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77 257-286.
[23] RAO, V. and TEH, Y. W. (2013). Fast MCMC sampling for Markov jump processes and extensions. J. Mach. Learn. Res. 14 3295-3320. · Zbl 1318.60078
[24] SCOTT, S. L. and SMYTH, P. (2003). The Markov modulated Poisson process and Markov Poisson cascade with applications to web traffic modeling. In Bayesian Statistics, 7 (Tenerife, 2002) 671-680. Oxford Univ. Press, New York.
[25] SIMMA, A. and JORDAN, M. I. (2010). Modeling events with cascades of Poisson processes. In Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence 546-555.
[26] SO, N., FRANKS, B., LIM, S. and CURLEY, J. P. (2015). A social network approach reveals associations between mouse social dominance and brain gene expression. PLoS ONE 10 e0134509. · doi:10.1371/journal.pone.0134509
[27] VEEN, A. and SCHOENBERG, F. P. (2008). Estimation of space-time branching process models in seismology using an EM-type algorithm. J. Amer. Statist. Assoc. 103 614-624. · Zbl 1469.86010 · doi:10.1198/016214508000000148
[28] VRIES, H. D. (1998). Finding a dominance order most consistent with a linear hierarchy: A new procedure and review. Anim. Behav. 55 827-843.
[29] WANG, T., BEBBINGTON, M. and HARTE, D. (2012). Markov-modulated Hawkes process with stepwise decay. Ann. Inst. Statist. Math. 64 521-544. · Zbl 1237.62181 · doi:10.1007/s10463-010-0320-7
[30] WANG, Y., DU, N., TRIVEDI, R. and SONG, L. (2016). Coevolutionary latent feature processes for continuous-time user-item interactions. In Advances in Neural Information Processing Systems 4547-4555.
[31] WEISS, J., NATARAJAN, S. and PAGE, D. (2012). Multiplicative forests for continuous-time processes. In Advances in Neural Information Processing Systems 458-466.
[32] WILLIAMSON, C. M., LEE, W. and CURLEY, J. P. (2016). Temporal dynamics of social hierarchy formation and maintenance in male mice. Anim. Behav. 115 259-272.
[33] WILLIAMSON, C. M., ROMEO, R. D. and CURLEY, J. P. (2017). Dynamic changes in social dominance and mPOA GnRH expression in male mice following social opportunity. Horm. Behav. 87 80-88. · doi:10.1016/j.yhbeh.2016.11.001
[34] WU, J., WARD, O. G., CURLEY, J. and ZHENG, T. (2022). Supplement to “Markov-modulated Hawkes processes for modeling sporadic and bursty event occurrences in social interactions.” https://doi.org/10.1214/21-AOAS1539SUPP
[35] XU, H. and ZHA, H. (2017). A Dirichlet mixture model of Hawkes processes for event sequence clustering. In Advances in Neural Information Processing Systems 1354-1363.
[36] ZHAO, Q., ERDOGDU, M. A., HE, H. Y., RAJARAMAN, A. and LESKOVEC, J. (2015). Seismic: A self-exciting point process model for predicting tweet popularity. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 1513-1522. ACM, New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.