×

Spatial functional data modeling of plant reflectances. (English) Zbl 1498.62295

Summary: Plant reflectance spectra, the profile of light reflected by leaves across different wavelengths, supply the spectral signature for a species at a spatial location to enable estimation of functional and taxonomic diversity for plants. We consider leaf spectra as “responses” to be explained spatially. These reflectance spectra are also functions over wavelength that respond to the environment. Our motivating data are gathered for several plant families from the Greater Cape Floristic Region (GCFR) in South Africa and lead us to develop rich novel spatial models that can explain spectra for genera within families. Wavelength responses for an individual leaf are viewed as a function of wavelength, leading to functional data modeling. Local environmental features become covariates. We introduce a wavelength, covariate interaction, since the response to environmental regressors may vary with wavelength, as may variance. Formal spatial modeling enables prediction of reflectances for genera at unobserved locations with known environmental features. We incorporate spatial dependence, wavelength dependence, and space-wavelength interaction (in the spirit of space-time interaction). We implement out-of-sample validation for model selection, finding that the model features above are informative for the functional data analysis. We supply ecological interpretation of the results under the selected model.

MSC:

62P12 Applications of statistics to environmental and related topics
62G08 Nonparametric regression and quantile regression
62R10 Functional data analysis

References:

[1] SHI, C. and WANG, L. (2014). Incorporating spatial information in spectral unmixing: A review. Remote Sens. Environ. 149 70-87.
[2] ASNER, G. P. and MARTIN, R. E. (2016). Spectranomics: Emerging science and conservation opportunities at the interface of biodiversity and remote sensing. Global Ecology and Conservation 8 212-219.
[3] ASNER, G. P., MARTIN, R. E., KNAPP, D. E., TUPAYACHI, R., ANDERSON, C. B., SINCA, F., VAUGHN, N. R. and LLACTAYO, W. (2017). Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science 355 385-389. · doi:10.1126/science.aaj1987
[4] BESSE, P. C., CARDOT, H. and STEPHENSON, D. B. (2000). Autoregressive forecasting of some functional climatic variations. Scand. J. Stat. 27 673-687. · Zbl 0962.62089
[5] CAVENDER-BARES, J., MEIRELES, J. E., COUTURE, J. J., KAPROTH, M. A., KINGDON, C. C., SINGH, A., SERBIN, S. P., CENTER, A., ZUNIGA, E. et al. (2016). Associations of leaf spectra with genetic and phylogenetic variation in oaks: Prospects for remote detection of biodiversity. Remote Sens. 8 221.
[6] CAWSE-NICHOLSON, K. (2021). NASA’s surface biology and geology designated observable: A perspective on surface imaging algorithms. Remote Sens. Environ. 257 112349.
[7] CLARK, M. L., ROBERTS, D. A. and CLARK, D. B. (2005). Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sens. Environ. 96 375-398.
[8] CORNWELL, W. K., WESTOBY, M., FALSTER, D. S., FITZJOHN, R. G., O’MEARA, B. C., PENNELL, M. W., MCGLINN, D. J., EASTMAN, J. M., MOLES, A. T. et al. (2014). Functional distinctiveness of major plant lineages. Journal of Ecology 102 345-356.
[9] DOUGHTY, C. E. (2017). Can leaf spectroscopy predict leaf and forest traits along a Peruvian tropical forest elevation gradient?: Amazonian leaf spectroscopy and traits. J. Geophys. Res., Biogeosci. 122 2952-2965.
[10] FENG, W., YAO, X., ZHU, Y., TIAN, Y. and CAO, W. (2008). Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. European Journal of Agronomy 28 394-404.
[11] FÉRET, J. B. (2019). Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: Potential and limitations of physical modeling and machine learning. Remote Sens. Environ. 231 110959.
[12] GAMON, J. A., WANG, R., GHOLIZADEH, H., ZUTTA, B., TOWNSEND, P. A. and CAVENDER-BARES, J. (2020). Consideration of scale in remote sensing of biodiversity. In Remote Sensing of Plant Biodiversity 425-447. Springer, Cham.
[13] Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. J. Amer. Statist. Assoc. 102 359-378. · Zbl 1284.62093 · doi:10.1198/016214506000001437
[14] Guo, W. (2002). Functional mixed effects models. Biometrics 58 121-128. · Zbl 1209.62072 · doi:10.1111/j.0006-341X.2002.00121.x
[15] Higdon, D. (1998). A process-convolution approach to modelling temperatures in the North Atlantic Ocean. Environ. Ecol. Stat. 5 173-190.
[16] Higdon, D. (2002). Space and space-time modeling using process convolutions. In Quantitative Methods for Current Environmental Issues 37-56. Springer, London. · Zbl 1255.86016
[17] HODGES, J. S. and REICH, B. J. (2010). Adding spatially-correlated errors can mess up the fixed effect you love. Amer. Statist. 64 325-334. · Zbl 1217.62095 · doi:10.1198/tast.2010.10052
[18] JACQUEMOUD, S. and BARET, F. (1990). PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 34 75-91.
[19] JACQUEMOUD, S. and USTIN, S. (2019a). Modeling leaf optical properties: PROSPECT. In Leaf Optical Properties Cambridge Univ. Press, Cambridge.
[20] JACQUEMOUD, S. and USTIN, S. (2019b). Variation due to leaf structural, chemical, and physiological traits. In Leaf Optical Properties 170-194. Cambridge Univ. Press, Cambridge.
[21] JACQUEMOUD, S. and USTIN, S. (2019c). Leaf optical properties in different wavelength domains. In Leaf Optical Properties 124-169. Cambridge Univ. Press, Cambridge.
[22] KHAN, K. and CALDER, C. A. (2020). Restricted spatial regression methods: Implications for inference. J. Amer. Statist. Assoc. 1-13.
[23] Kimeldorf, G. S. and Wahba, G. (1970). A correspondence between Bayesian estimation on stochastic processes and smoothing by splines. Ann. Math. Stat. 41 495-502. · Zbl 0193.45201 · doi:10.1214/aoms/1177697089
[24] KOKALY, R. F., ASNER, G. P., OLLINGER, S. V., MARTIN, M. E. and WESSMAN, C. A. (2009). Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sens. Environ. 113 S78-S91.
[25] LAUKAITIS, A. (2008). Functional data analysis for cash flow and transactions intensity continuous-time prediction using Hilbert-valued autoregressive processes. European J. Oper. Res. 185 1607-1614. · Zbl 1126.62080
[26] Leng, X. and Müller, H.-G. (2006). Classification using functional data analysis for temporal gene expression data. Bioinformatics 22 68-76. · doi:10.1093/bioinformatics/bti742
[27] LOCANTORE, N., MARRON, J. S., SIMPSON, D. G., TRIPOLI, N., ZHANG, J. T. and COHEN, K. L. (1999). Robust principal component analysis for functional data. TEST 8 1-73. · Zbl 0980.62049 · doi:10.1007/BF02595862
[28] Morris, J. S. and Carroll, R. J. (2006). Wavelet-based functional mixed models. J. R. Stat. Soc. Ser. B. Stat. Methodol. 68 179-199. · Zbl 1110.62053 · doi:10.1111/j.1467-9868.2006.00539.x
[29] ORDOÑEZ, C., MARTÍNEZ, J., MATÍAS, J. M., REYES, A. N. and RODRÍGUEZ-PÉREZ, J. R. (2010). Functional statistical techniques applied to vine leaf water content determination. Math. Comput. Modelling 52 1116-1122. · Zbl 1205.62192 · doi:10.1016/j.mcm.2010.03.008
[30] QUINTANO, C., FERNÁNDEZ-MANSO, A., SHIMABUKURO, Y. E. and PEREIRA, G. (2012). Spectral unmixing. Int. J. Remote Sens. 33 5307-5340.
[31] RAMSAY, J. O. (1988). Monotone regression splines in action. Statist. Sci. 425-441.
[32] RAMSAY, J. (2005). Functional data analysis. Encyclopedia of Statistics in Behavioral Science.
[33] RAMSAY, J. O. and SILVERMAN, B. W. (2007). Applied Functional Data Analysis: Methods and Case Studies. Springer, Berlin.
[34] RAY, S. and MALLICK, B. (2006). Functional clustering by Bayesian wavelet methods. J. R. Stat. Soc. Ser. B. Stat. Methodol. 68 305-332. · Zbl 1100.62058 · doi:10.1111/j.1467-9868.2006.00545.x
[35] REICH, P. B., WRIGHT, I. J., CAVENDER-BARES, J., CRAINE, J., OLEKSYN, J., WESTOBY, M. and WALTERS, M. (2003). The evolution of plant functional variation: Traits, spectra, and strategies. International Journal of Plant Sciences 164 S143-S164.
[36] REISS, P. T. and OGDEN, R. T. (2007). Functional principal component regression and functional partial least squares. J. Amer. Statist. Assoc. 102 984-996. · Zbl 1469.62237 · doi:10.1198/016214507000000527
[37] SCHNEIDER, F. D., MORSDORF, F., SCHMID, B., PETCHEY, O. L., HUENI, A., SCHIMEL, D. S. and SCHAEPMAN, M. E. (2017). Mapping functional diversity from remotely sensed morphological and physiological forest traits. Nat. Commun. 8 1-12.
[38] SCHWEIGER, A. K., CAVENDER-BARES, J., TOWNSEND, P. A., HOBBIE, S. E., MADRITCH, M. D., WANG, R., TILMAN, D. and GAMON, J. A. (2018). Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function. Nat. Ecol. Evol. 2 976-982.
[39] Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B. Stat. Methodol. 64 583-639. · Zbl 1067.62010 · doi:10.1111/1467-9868.00353
[40] TANNER, M. A. (1996). Tools for Statistical Inference, 3rd ed. Springer Series in Statistics. Springer, New York. · Zbl 0846.62001 · doi:10.1007/978-1-4612-4024-2
[41] TAYLOR, H. C. (1996). Cederberg Vegetation and Flora, National Botanical Institute, Cape Town.
[42] TIAN, P., TENG, I. C., MAY, L. D., KURZ, R., LU, K., SCADENG, M., HILLMAN, E. M., DE CRESPIGNY, A. J., D’ARCEUIL, H. E. et al. (2010). Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal. Proc. Natl. Acad. Sci. USA 107 15246-15251.
[43] ULLAH, S. and FINCH, C. F. (2013). Applications of functional data analysis: A systematic review. BMC Med. Res. Methodol. 13 43. · doi:10.1186/1471-2288-13-43
[44] VAN DER MERWE, H., VAN ROOYEN, M. W., and VAN ROOYEN, N. (2008). Vegetation of the Hantam-Tanqua-Roggeveld subregion, South Africa part 2: Succulent karoo biome related vegetation. Koedoe 50 160-183.
[45] WACKERNAGEL, H. (1998). Multivariate Geostatistics. Springer, Berlin. · Zbl 0912.62131
[46] WHITE, P. A. and GELFAND, A. E. (2021). Multivariate functional data modeling with time-varying clustering. TEST 30 586-602. · Zbl 1479.62096 · doi:10.1007/s11749-020-00733-z
[47] WHITE, P. A., KEELER, D. G. and RUPPER, S. (2021). Hierarchical integrated spatial process modeling of monotone West Antarctic snow density curves. Ann. Appl. Stat. 15 556-571. · Zbl 1477.62326 · doi:10.1214/21-aoas1443
[48] WHITE, P. A., FRYE, H., CHRISTENSEN, M. F., GELFAND, A. E. and SILANDER, J. A. (2022). Supplement to “Spatial functional data modeling of plant reflectances.” https://doi.org/10.1214/21-AOAS1576SUPP
[49] YU, S., WANG, G., WANG, L., LIU, C. and YANG, L. (2020). Estimation and inference for generalized geoadditive models. J. Amer. Statist. Assoc. 115 761-774. · Zbl 1445.62112 · doi:10.1080/01621459.2019.1574584
[50] Zhang, H. (2004). Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics. J. Amer. Statist. Assoc. 99 250-261 · Zbl 1089.62538 · doi:10.1198/016214504000000241
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.