×

Asymptotics of running maxima for \(\varphi \)-subgaussian random double arrays. (English) Zbl 1498.60112

Let \(\{X_{k,n}, k \geq 1, n \geq 1\}\) be a double array of \(\phi\)-subgaussian random variables that are not necessarily i.i.d., defined on the same probability space. The authors study sufficient conditions on the tail distributions of \(X_{k,n}\) that guarantee the existence of a sequence \(\{a_{m,j}, m \geq 1, j \geq 1\}\) of real numbers such that \(Y_{m,j} = \max_{1\leq k \leq m, 1 \leq n \leq j} X_{k,n} - a_{m,j}\) converge to 0 almost surely as the number of random variables \(X_{k,n}\) tends to infinity. The array \(\{Y_{m,j}\}\) is split into positive part and negative part and the results are proved separately for the two. Almost sure and lim (max) convergence of random functionals of the double arrays are investigated. After discussing some examples, some numerical examples are provided that confirm the obtained theoretical results.

MSC:

60F15 Strong limit theorems
60G60 Random fields
60G70 Extreme value theory; extremal stochastic processes

References:

[1] Birnbaum, Z., An inequality for Mill’s ratio, Ann Math Statist, 2, 245-246 (1942) · Zbl 0060.29607 · doi:10.1214/aoms/1177731611
[2] Borovkov, K.; Mishura, Y.; Novikov, A.; Zhitlukhin, M., Bounds for expected maxima of Gaussian processes and their discrete approximations, Stochastics, 89, 21-37 (2017) · Zbl 1361.60027 · doi:10.1080/17442508.2015.1126282
[3] Buldygin, V.; Kozachenko, IV, Metric characterization of random variables and random processes (2000), Providence, R.I: American Mathematical Society, Providence, R.I · Zbl 0998.60503 · doi:10.1090/mmono/188
[4] Csáki, E.; Gonchigdanzan, K., Almost sure limit theorems for the maximum of stationary Gaussian sequences, Stochastics, 58, 195-203 (2002) · Zbl 1014.60031
[5] Donhauzer I, Olenko A, Volodin A (2021) Strong law of large numbers for functionals of random fields with unboundedly increasing covariances. Commun Stat Theory Methods: 1-17. doi:10.1080/03610926.2020.1868515
[6] Dudley R (1967) The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J Funct Anal 1:290-330 · Zbl 0188.20502
[7] Embrechts, P.; Klüppelberg, C.; Mikosch, T., Modelling extremal events for insurance and finance (1997), Berlin: Springer-Verlag, Berlin · Zbl 0873.62116 · doi:10.1007/978-3-642-33483-2
[8] Fernique X (1975) Regularité des trajectoires des fonctions aléatoires gaussiennes. In: Ecole d’Eté de Probabilités de Saint-Flour IV—1974, pp 1-94 · Zbl 0331.60025
[9] Giuliano, R., Remarks on maxima of real random sequences, Note Mat, 15, 143-145 (1995) · Zbl 0915.60046
[10] Giuliano, R.; Macci, C., Large deviation principles for sequences of maxima and minima, Comm Statist Theory Methods, 43, 1077-1098 (2014) · Zbl 1294.60048 · doi:10.1080/03610926.2012.668606
[11] Giuliano, R.; Ngamkham, T.; Volodin, A., On the asymptotic behavior of the sequence and series of running maxima from a real random sequence, Stat Probabil Lett, 83, 534-542 (2013) · Zbl 1269.60033 · doi:10.1016/j.spl.2012.10.010
[12] Hashorva, E.; Hüsler, J., Extremes of Gaussian processes with maximal variance near the boundary points, Methodol Comput Appl Probab, 2, 255-269 (2000) · Zbl 0969.60058 · doi:10.1023/A:1010029228490
[13] Hoffmann-Jørgensen, J., Probability with a view toward statistics (1994), New-York: Chapman & Hall, New-York · Zbl 0821.62003 · doi:10.1007/978-1-4899-3019-4
[14] Hu, T.; Rosalsky, A.; Volodin, A.; Zhang, S., A complete convergence theorem for row sums from arrays of rowwise independent random elements in Rademacher type p Banach spaces, II. Stoch Anal and Appl, 39, 1, 177-193 (2021) · Zbl 1469.60092 · doi:10.1080/07362994.2020.1791721
[15] Kahane, J., Propriétés locales des fonctions à séries de Fourier aléatoires, Studia Math, 19, 1-25 (1960) · Zbl 0096.11402 · doi:10.4064/sm-19-1-1-25
[16] Klesov, O., Limit theorems for multi-indexed sums of random variables (2014), Heidelberg: Springer, Heidelberg · Zbl 1318.60005 · doi:10.1007/978-3-662-44388-0
[17] Kozachenko, Y.; Olenko, A., Aliasing-truncation errors in sampling approximations of sub-gaussian signals, IEEE Trans Inf Theory, 62, 5831-5838 (2016) · Zbl 1359.94381 · doi:10.1109/TIT.2016.2597146
[18] Kozachenko, Y.; Olenko, A., Whittaker-kotel’nikov-shannon approximation of φ-sub-gaussian random processes, J Math Anal Appl, 443, 926-946 (2016) · Zbl 1342.60048 · doi:10.1016/j.jmaa.2016.05.052
[19] Kozachenko, Y.; Olenko, A.; Polosmak, O., Convergence in Lp([0,t]) of wavelet expansions of φ-sub-gaussian random processes, Methodol Comput Appl Probab, 17, 139-153 (2015) · Zbl 1310.60028 · doi:10.1007/s11009-013-9346-7
[20] Kratz, M., Level crossings and other level functionals of stationary gaussian processes, Probab Surv, 3, 230-288 (2006) · Zbl 1189.60079 · doi:10.1214/154957806000000087
[21] Leadbetter, M.; Lindgren, G.; Rootzén, H., Extremes and related properties of random sequences and processes (1983), New York: Springer, New York · Zbl 0518.60021 · doi:10.1007/978-1-4612-5449-2
[22] Ledoux, M.; Talagrand, M., Probability in banach spaces: isoperimetry and processes (2013), Berlin: Springer, Berlin · Zbl 1226.60003
[23] Pickands, J., Maxima of stationary Gaussian processes, Z Wahrscheinlichkeitstheor Verw Geb, 7, 190-223 (1967) · Zbl 0158.16702 · doi:10.1007/BF00532637
[24] Piterbarg, V., Asymptotic methods in the theory of gaussian processes and fields (1996), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0841.60024
[25] Talagrand, M., Upper and lower bounds for stochastic processes. modern methods and classical problems (2014), Heidelberg: Springer, Heidelberg · Zbl 1293.60001 · doi:10.1007/978-3-642-54075-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.