×

Geometric realizations of cyclic actions on surfaces. II. (English) Zbl 1498.57014

This is a sequel to a paper by S. Parsad et al. [J. Topol. Anal. 11, No. 4, 929–964 (2019; Zbl 1432.57047)] where the authors presented a structure theorem for the realization of a finite order mapping class of a surface \(S_g\) as an isometry of a hyperbolic structure on \(S_g\) (in the sense of the Nielsen realization problem; as basic building blocks they consider periodic mapping classes which can be realized by an embedding of the surface into Euclidean space \(\mathbb R^3\) invariant under a rotation of \(\mathbb R^3\), or as a rotation of a polygon with a suitable side-pairing).
In the present paper the authors elaborate on this, in particular they give a description of the fixed point set in Teichmüller space of a periodic mapping class (whose dimension is the dimension of the Teichmüller space of the quotient orbifold of \(S_g\) by a periodic realization of the mapping class). As a Corollary, the fixed point set of an arbitrary finite group of mapping classes (containing an element of order at least 3) is not symplectomorphic to the Euclidean space of the same dimension. The authors give some other applications, most notably they indicate a topological proof of the Nielsen realization problem for cyclic groups of mapping classes (since Nielsen’s original proof from 1942 has a gap, the first proof for cyclic and solvable groups is by Fenchel 1948 using Teichmüller theory; the first purely topological proof for cyclic and solvable groups (along the lines of Nielsen’s original approach as generalized by Zieschang) is given in a paper by B. Zimmermann [Math. Ann. 229, 279–288 (1977; Zbl 0342.20025)], the first proof for arbitrary finite groups by Kerckhoff 1983 (again based on Teichmüller theory), the first purely topological proof (along Nielsen’s lines) for arbitrary finite groups by D. Gabai [Ann. Math. (2) 136, No. 3, 447–510 (1992; Zbl 0785.57004)]).

MSC:

57K20 2-dimensional topology (including mapping class groups of surfaces, Teichmüller theory, curve complexes, etc.)
57M60 Group actions on manifolds and cell complexes in low dimensions

References:

[1] Akrout, H., Singularités topologiques des systoles généralisées, Topology, 42, 2, 291-308 (2003) · Zbl 1054.32006 · doi:10.1016/S0040-9383(01)00024-6
[2] Bavard, C., Disques extrémaux et surfaces modulaires, Ann. Fac. Sci. Toulouse Math. (6), 5, 2, 191-202 (1996) · Zbl 0873.30026 · doi:10.5802/afst.827
[3] Benim, R.; Wootton, A., Enumerating quasiplatonic cyclic group actions, Rocky Mt. J. Math., 43, 5, 1459-1480 (2013) · Zbl 1297.57043 · doi:10.1216/RMJ-2013-43-5-1459
[4] Bers, L., Deformations and moduli of Riemann surfaces with nodes and signatures, Math. Scand., 36, 12-16 (1975) · Zbl 0301.32019 · doi:10.7146/math.scand.a-11557
[5] Bonfert-Taylor, P.; Bridgeman, M.; Canary, RD; Taylor, EC, Quasiconformal homogeneity of hyperbolic surfaces with fixed-point full automorphisms, Math. Proc. Camb. Philos. Soc., 143, 1, 71-84 (2007) · Zbl 1133.30012 · doi:10.1017/S0305004107000138
[6] Breuer, T: Characters and Automorphism Groups of Compact Riemann Surfaces. In: Volume 280 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2000) · Zbl 0952.30001
[7] Allen Broughton, S., Classifying finite group actions on surfaces of low genus, J. Pure Appl. Algebra, 69, 3, 233-270 (1991) · Zbl 0722.57005 · doi:10.1016/0022-4049(91)90021-S
[8] Allen Broughton, S.; Wootton, A., Finite abelian subgroups of the mapping class group, Algebr. Geom. Topol., 7, 1651-1697 (2007) · Zbl 1126.14038 · doi:10.2140/agt.2007.7.1651
[9] Edmonds, AL, Surface symmetry. I, Michigan Math. J., 29, 2, 171-183 (1982) · Zbl 0511.57025 · doi:10.1307/mmj/1029002670
[10] Farb, B., Margalit, D.: A primer on mapping class groups. In: Volume 49 of Princeton Mathematical Series. Princeton University Press, Princeton, (2012) · Zbl 1245.57002
[11] Fenchel, W., Estensioni di gruppi discontinui e trasformazioni periodiche delle superficie, Atti Accad. Naz Lincei. Rend. Cl. Sci. Fis. Mat. Nat.(8), 5, 326-329 (1948) · Zbl 0036.12902
[12] Fenchel, W., Remarks on finite groups of mapping classes, Mat. Tidsskr. B., 90-95, 1950 (1950) · Zbl 0039.19303
[13] Gilman, J., On conjugacy classes in the Teichmüller modular group, Michigan Math. J., 23, 1, 53-63 (1976) · Zbl 0334.32022 · doi:10.1307/mmj/1029001621
[14] Gilman, J., Structures of elliptic irreducible subgroups of the modular group, Proc. London Math. Soc. (3), 47, 1, 27-42 (1983) · Zbl 0522.30035 · doi:10.1112/plms/s3-47.1.27
[15] Gromov, M., Pseudo holomorphic curves in symplectic manifolds, Invent. Math., 82, 2, 307-347 (1985) · Zbl 0592.53025 · doi:10.1007/BF01388806
[16] Hamenstädt, U.; Koch, R., Systoles of a family of triangle surfaces, Exp. Math., 11, 2, 249-270 (2002) · Zbl 1116.53302 · doi:10.1080/10586458.2002.10504690
[17] Harvey, WJ, Cyclic groups of automorphisms of a compact Riemann surface, Quart. J. Math. Oxford Ser., 2, 17, 86-97 (1966) · Zbl 0156.08901 · doi:10.1093/qmath/17.1.86
[18] Harvey, WJ, On branch loci in Teichmüller space, Trans. Amer. Math. Soc., 153, 387-399 (1971) · Zbl 0211.10503
[19] Katok, S., Fuchsian Groups. Chicago Lectures in Mathematics (1992), Chicago: University of Chicago Press, Chicago · Zbl 0753.30001
[20] Kerckhoff, SP, The Nielsen realization problem, Ann. of Math. (2), 117, 2, 235-265 (1983) · Zbl 0528.57008 · doi:10.2307/2007076
[21] Kobayashi, S., Fixed points of isometries, Nagoya Math. J., 13, 63-68 (1958) · Zbl 0084.18202 · doi:10.1017/S0027763000023497
[22] Maclachlan, C.; Harvey, WJ, On mapping-class groups and Teichmüller spaces, Proc. London Math. Soc. (3), 30, part 4, 496-512 (1975) · Zbl 0303.32020 · doi:10.1112/plms/s3-30.4.496
[23] Masur, H.; Wolf, M., The Weil-Petersson isometry group, Geom. Dedicata, 93, 177-190 (2002) · Zbl 1014.32008 · doi:10.1023/A:1020300413472
[24] McCullough, D.; Rajeevsarathy, K., Roots of Dehn twists, Geom. Dedicata, 151, 397-409 (2011) · Zbl 1219.57019 · doi:10.1007/s10711-010-9541-4
[25] McDuff, D.; Salamon, D., Introduction to Symplectic Topology. Oxford Graduate Texts in Mathematics (2017), Oxford: Oxford University Press, Oxford · doi:10.1093/oso/9780198794899.001.0001
[26] Nielsen, J: Die Struktur periodischer Transformationen von Flächen, volume 11. Levin & Munksgaard (1937) · Zbl 0017.13302
[27] Nielsen, J., Abbildungsklassen endlicher Ordnung, Acta Math., 75, 23-115 (1943) · Zbl 0027.26601 · doi:10.1007/BF02404101
[28] Parsad, S.; Rajeevsarathy, K.; Sanki, B., Geometric realizations of cyclic actions on surfaces, J. Topol. Anal. (2018) · Zbl 1432.57047 · doi:10.1142/S1793525319500365
[29] Rajeevsarathy, K.; Vaidyanathan, P., Roots of dehn twists about multicurves, Glasgow Math. J. (2017) · Zbl 1409.57022 · doi:10.1017/S0017089517000283
[30] Schmutz, P., Riemann surfaces with shortest geodesic of maximal length, Geom. Funct. Anal., 3, 6, 564-631 (1993) · Zbl 0810.53034 · doi:10.1007/BF01896258
[31] Thurston, WP; Levy, S., Three-dimensional geometry and topology, Volume 35 of Princeton Mathematical Series (1997), Princeton: Princeton University Press, Princeton · Zbl 0873.57001
[32] Wolpert, SA.: Families of Riemann surfaces and Weil-Petersson geometry. In: Volume 113 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (2010) · Zbl 1198.30049
[33] Zieschang, H., On triangle groups, Russ. Math. Surv., 31, 5, 226-233 (1976) · Zbl 0364.20053 · doi:10.1070/RM1976v031n05ABEH004199
[34] Zieschang, H.: Finite groups of mapping classes of surfaces. In: Volume 875 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (1981) · Zbl 0472.57006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.