×

Strong convergence theorems for a class of split feasibility problems and fixed point problem in Hilbert spaces. (English) Zbl 1498.47143

Summary: In this paper we consider a class of split feasibility problem by focusing on the solution sets of two important problems in the setting of Hilbert spaces. One of them is the set of zero points of the sum of two monotone operators and the other is the set of fixed points of mappings. By using the modified forward-backward splitting method, we propose a viscosity iterative algorithm. Under suitable conditions, some strong convergence theorems of the sequence generated by the algorithm to a common solution of the problem are proved. At the end of the paper, some applications and the constructed algorithm are also discussed.

MSC:

47J25 Iterative procedures involving nonlinear operators
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47H05 Monotone operators and generalizations

References:

[1] Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in product space. Numer. Algorithms 8, 221-239 (1994) · Zbl 0828.65065 · doi:10.1007/BF02142692
[2] Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18, 441-453 (2002) · Zbl 0996.65048 · doi:10.1088/0266-5611/18/2/310
[3] Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 51, 2353-2365 (2006) · doi:10.1088/0031-9155/51/10/001
[4] Martinet, B.: Régularisation dinéquations variationnelles par approximations successives. Rev. Fr. Inform. Rech. Opér. 3, 154-158 (1970) · Zbl 0215.21103
[5] Bruck, R.E., Reich, S.: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houst. J. Math. 3, 459-470 (1977) · Zbl 0383.47035
[6] Eckstein, J., Bertsckas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293-318 (1992) · Zbl 0765.90073 · doi:10.1007/BF01581204
[7] Marino, G., Xu, H.K.: Convergence of generalized proximal point algorithm. Commun. Pure Appl. Anal. 3, 791-808 (2004) · Zbl 1095.90115 · doi:10.3934/cpaa.2004.3.791
[8] Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240-256 (2002) · Zbl 1013.47032 · doi:10.1112/S0024610702003332
[9] Yao, Y., Noor, M.A.: On convergence criteria of generalized proximal point algorithms. J. Comput. Appl. Math. 217, 46-55 (2008) · Zbl 1147.65049 · doi:10.1016/j.cam.2007.06.013
[10] Montira, S., Narin, P., Suthep, S.: Weak convergence theorems for split feasibility problems on zeros of the sum of monotone operators and fixed point sets in Hilbert spaces. Fixed Point Theory Appl. 2017, Article ID 6 (2017) · Zbl 1461.47036
[11] Byrne, C., Censor, Y., Gibali, A., Reich, S.: Weak and strong convergence of algorithms for the split common null point problem. J. Nonlinear Convex Anal. 13, 759-775 (2012) · Zbl 1262.47073
[12] Takahashi, W., Xu, H.K., Yao, J.C.: Iterative methods for generalized split feasibility problems in Hilbert spaces. Set-Valued Var. Anal. 23, 205-221 (2015) · Zbl 1326.47099 · doi:10.1007/s11228-014-0285-4
[13] Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72, 383-390 (1979) · Zbl 0428.47039 · doi:10.1016/0022-247X(79)90234-8
[14] Baillon, J.B., Bruck, R.E., Reich, S.: On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces. Houst. J. Math. 4, 1-9 (1978) · Zbl 0396.47033
[15] Boikanyo, O.A.: The viscosity approximation forward-backward splitting method for zeros of the sum of monotone operators. Abstr. Appl. Anal. 2016, Article ID 2371857 (2016) · Zbl 1470.65109 · doi:10.1155/2016/2371857
[16] Xu, H.K.: Averaged mappings and the gradient-projection algorithm. J. Optim. Theory Appl. 150, 360-378 (2011) · Zbl 1233.90280 · doi:10.1007/s10957-011-9837-z
[17] Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20, 103-120 (2004) · Zbl 1051.65067 · doi:10.1088/0266-5611/20/1/006
[18] Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Dekker, New York (1984) · Zbl 0537.46001
[19] Takahashi, W.: Introduction to Nonlinear and Convex Analysis. Yokohama Publishers, Yokohama (2009) · Zbl 1183.46001
[20] Takahashi, S., Takahashi, W., Toyoda, M.: Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces. J. Optim. Theory Appl. 147, 27-41 (2010) · Zbl 1208.47071 · doi:10.1007/s10957-010-9713-2
[21] Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leiden (1976) · Zbl 0328.47035 · doi:10.1007/978-94-010-1537-0
[22] Takahashi, W.: Nonlinear Functional Analysis: Fixed Point Theory and Its Applications. Yokohama Publishers, Yokohama (2000) · Zbl 0997.47002
[23] Xu, H.K.: Viscosity approximation methods for nonexpansive mapping. J. Math. Anal. Appl. 298, 279-291 (2004) · Zbl 1061.47060 · doi:10.1016/j.jmaa.2004.04.059
[24] Baillon, J.B., Haddad, G.: Quelques propriétés des opérateurs angle-bornés et n-cycliquement monotones. Isr. J. Math. 26(2), 137-150 (1977) · Zbl 0352.47023 · doi:10.1007/BF03007664
[25] Cui, H., Wang, F.: Iterative methods for the split common fixed point problem in Hilbert spaces. Fixed Point Theory Appl. 2014, Article ID 78 (2014) · Zbl 1332.47041 · doi:10.1186/1687-1812-2014-78
[26] Moudafi, A.: A note on the split common fixed-point problem for quasi-nonexpansive operators. Nonlinear Anal., Theory Methods Appl. 74, 4083-4087 (2011) · Zbl 1232.49017 · doi:10.1016/j.na.2011.03.041
[27] Shimizu, T., Takahashi, W.: Strong convergence to common fixed points of families of nonexpansive mappings. J. Math. Anal. Appl. 211, 71-83 (1997) · Zbl 0883.47075 · doi:10.1006/jmaa.1997.5398
[28] Zhao, J., He, S.: Strong convergence of the viscosity approximation process for the split common fixed-point problem of quasi-nonexpansive mappings. J. Appl. Math. 2012, Article ID 438023 (2012) · Zbl 1319.47065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.