×

Mean Li-Yorke chaotic set with full Hausdorff dimension for continued fractions. (English) Zbl 1498.37038

Summary: In this paper, we consider the mean Li-Yorke chaotic property for continued fraction dynamical system. Every measurable mean Li-Yorke scrambled set along any given sequence is of zero Lebesgue measure. Meanwhile, we construct one with full Hausdorff dimension for the sequence with some mild condition.

MSC:

37C45 Dimension theory of smooth dynamical systems
28A80 Fractals
11A55 Continued fractions
40A15 Convergence and divergence of continued fractions
Full Text: DOI

References:

[1] Devaney, R. L., An Introduction to Chaotic Dynamical Systems, 2nd edn., (Addison-Wesley, Redwood City, CA, 1989). · Zbl 0695.58002
[2] Li, T. Y. and Yorke, J. A., Period three implies chaos, Am. Math. Monthly82 (1975) 985-992. · Zbl 0351.92021
[3] Schweizer, B. and Smítal, J., Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Am. Math. Soc.344(2) (1994) 737-754. · Zbl 0812.58062
[4] Downarowicz, T., Positive topological entropy implies chaos DC2, Proc. Am. Math. Soc.142 (2014) 137-149. · Zbl 1304.37008
[5] Huang, W. and Ye, X., Devaney’s chaos or 2-scattering implies Li-Yorke’s chaos, Topol. Appl.117(3) (2002) 259-272. · Zbl 0997.54061
[6] Wang, L., Huang, G. and Huan, S., Distributional chaos in a sequence, Nonlinear Anal.67 (2007) 2131-2136. · Zbl 1121.37018
[7] Liu, H., Wang, L. D. and Chu, Z. Y., Devaney’s chaos inplies distributional chaos in a sequence, Nonlinear Anal.71 (2009) 6144-6147. · Zbl 1194.37035
[8] Garcia-Ramos, F. and Jin, L., Mean proximality and mean Li-Yorke chaos, Proc. Am. Math. Soc.145(7) (2017) 2959-2969. · Zbl 1375.37107
[9] Li, B., Wang, B.-W., Wu, J. and Xu, J., The shringking target problem in the dynamical system of continued fractions, Proc. Lond. Math. Soc.108(1) (2014) 159-186. · Zbl 1286.11123
[10] Ma, C. and Zhang, S.-H., Jarnik’s theorem without the monotonicity on the approximating function, Fractals27(4) (2019) 1950044. · Zbl 1433.28005
[11] Ma, C., Wang, B.-W. and Wu, J., Diophantine approximation of the orbits in topological dynamical systems, Discrete Contin. Dyn. Syst.39(5) (2019) 2455-2471. · Zbl 1442.37031
[12] Hussain, M. and Wang, W.-L., Two dimensional shrinking target problems in beta dynamical systems, Bull. Aust. Math. Soc.97(1) (2018) 33-42. · Zbl 1397.11126
[13] Coons, M., Hussain, M. and Wang, B.-W., A dichotomy law for the Diophantine properties in \(\beta \)-dynamical systems, Mathematika62(3) (2016) 884-897. · Zbl 1396.11101
[14] Hussain, M., Li, B., Simmons, D. and Wang, B.-W., Dynamical Borel-Cantelli lemma for recurrence theory, Ergod. Theory Dyn. Syst. (2021), https://doi.org/10.1017/etds.2021.23. · Zbl 1507.37001
[15] Li, J. and Qiao, Y., Mean Li-Yorke chaos along some good sequences, Monatsh. Math.186 (2018) 153-173. · Zbl 1387.37020
[16] Xiong, J., Hausdorff dimension of a chaotic set of shift of a symbolic space, Sci. China38 (1995) 696-708. · Zbl 0843.58041
[17] Liu, W. B., Huang, C., Li, L. M. and Wang, S. L., A construction of the scrambled set with full Hausdorff dimension for beta-transformations, Fractals26(1) (2018) 1850005. · Zbl 1432.28008
[18] Liu, W. B. and Li, B., Chaotic and topological properties of continued fractions, J. Number Theory174 (2017) 369-383. · Zbl 1400.11019
[19] Xiao, Y.-F., Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for \(\beta \)-transformation, Discrete Contin. Dyn. Syst.41(2) (2021) 525-536. · Zbl 1460.37015
[20] Khintchine, A. Ya., Continued Fractions (University of Chicago Press, 1964). · Zbl 0071.03601
[21] Wu, J., A remark on the growth of the denominators of convergents, Monatsh. Math.147(3) (2006) 259-264. · Zbl 1091.11028
[22] Jarnik, I., Zur metrischen theorie der diopahantischen approximationen, Prace Mat. Fiz.36 (1928) 91-106(in German). · JFM 55.0718.01
[23] Hu, H. and Yu, Y.-L., On Schmidt’s game and the set of points with non-dense orbits under a class of expanding maps, J. Math. Anal. Appl.418(2) (2014) 906-920. · Zbl 1345.37038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.