×

Existence and asymptotics of ground states to the nonlinear Dirac equation with Coulomb potential. (English) Zbl 1498.35459

Summary: In this paper we study the Dirac equation with Coulomb potential \[ -i \alpha \cdot \nabla u + a \beta u - \frac{\mu}{| x |} u = f ( x , | u | ) u, \quad x \in \mathbb{R}^3 \] where \(a\) is a positive constant, \( \mu\) is a positive parameter, \( \alpha = ( \alpha_1 , \alpha_2 , \alpha_3)\), \( \alpha_i\) and \(\beta\) are \(4 \times 4\) Pauli-Dirac matrices. The Dirac operator is unbounded from below and above so the associate energy functional is strongly indefinite. Under some suitable conditions, we prove that the problem possesses a ground state solution which is exponentially decay, and the least energy has continuous dependence about \(\mu \). Moreover, we are able to obtain the asymptotic property of ground state solution as \(\mu \rightarrow 0^+\), this result can characterize some relationship of the above problem between \(\mu > 0\) and \(\mu = 0\).

MSC:

35Q41 Time-dependent Schrödinger equations and Dirac equations
35B40 Asymptotic behavior of solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
Full Text: DOI

References:

[1] C.O. Alves and M.A. Souto, Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity, J. Differential Equations 254 (2013), 1977-1991. doi:10.1016/j.jde.2012.11.013. · Zbl 1263.35076 · doi:10.1016/j.jde.2012.11.013
[2] M. Balabane, T. Cazenave, A. Douady and F. Merle, Existence of excited states for a nonlinear Dirac field, Comm. Math. Phys. 41 (1988), 153-176. doi:10.1007/BF01218265. · Zbl 0696.35158 · doi:10.1007/BF01218265
[3] M. Balabane, T. Cazenave and L. Vazquez, Existence of standing waves for Dirac fields with singular nonlinearities, Comm. Math. Phys. 133 (1990), 53-74. doi:10.1007/BF02096554. · Zbl 0721.35065 · doi:10.1007/BF02096554
[4] T. Bartsch and Y.H. Ding, Solutions of nonlinear Dirac equations, J. Differential Equations 226 (2006), 210-249. doi:10. 1016/j.jde.2005.08.014. · Zbl 1126.49003 · doi:10.1016/j.jde.2005.08.014
[5] T. Bartsch and Y.H. Ding, Deformation theorems on non-metrizable vector spaces and applications to critical point theory, Math. Nach. 279 (2006), 1267-1288. doi:10.1002/mana.200410420. · Zbl 1117.58007 · doi:10.1002/mana.200410420
[6] D. Cao and P. Han, Solutions for semilinear elliptic equations with critical exponents and Hardy potential, J. Differential Equations 205 (2004), 521-537. doi:10.1016/j.jde.2004.03.005. · Zbl 1154.35346 · doi:10.1016/j.jde.2004.03.005
[7] D. Cao and S. Peng, A note on the sign-changing solutions to elliptic problem with critical Sobolev and Hardy terms, J. Differential Equations 193 (2003), 424-434. doi:10.1016/S0022-0396(03)00118-9. · Zbl 1140.35412 · doi:10.1016/S0022-0396(03)00118-9
[8] D. Cao and S. Peng, A global compactness result for singular elliptic problems involving critical Sobolev exponent, Proc. Amer. Math. Soc. 131 (2003), 1857-1866. doi:10.1090/S0002-9939-02-06729-1. · Zbl 1075.35009 · doi:10.1090/S0002-9939-02-06729-1
[9] D. Cao and S. Yan, Infinitely many solutions for an elliptic problem involving critical Sobolev growth and Hardy potential, Calc. Var. PDEs. 38 (2010), 471-501. doi:10.1007/s00526-009-0295-5. · Zbl 1194.35161 · doi:10.1007/s00526-009-0295-5
[10] T. Cazenave and L. Vazquez, Existence of local solutins of a classical nonlinear Dirac field, Comm. Math. Phys. 105 (1986), 35-47. doi:10.1007/BF01212340. · Zbl 0596.35117 · doi:10.1007/BF01212340
[11] Z. Chen and W. Zou, On an elliptic problem with critical exponent and Hardy potential, J. Differential Equations 252 (2012), 969-987. doi:10.1016/j.jde.2011.09.042. · Zbl 1233.35078 · doi:10.1016/j.jde.2011.09.042
[12] Y. Deng, L. Jin and S. Peng, Solutions of Schrödinger equations with inverse square potential and critical nonlinearity, J. Differential Equations 253 (2012), 1376-1398. doi:10.1016/j.jde.2012.05.009. · Zbl 1248.35058 · doi:10.1016/j.jde.2012.05.009
[13] Y.H. Ding, Variational Methods for Strongly Indefinite Problems, World Scientific Press, 2008.
[14] Y.H. Ding, Semi-classical ground states concentrating on the nonlinear potential for a Dirac equation, J. Differential Equations 249 (2010), 1015-1034. doi:10.1016/j.jde.2010.03.022. · Zbl 1193.35161 · doi:10.1016/j.jde.2010.03.022
[15] Y.H. Ding and X.Y. Liu, Semi-classical limits of ground states of a nonlinear Dirac equation, J. Differential Equations 252 (2012), 4962-4987. doi:10.1016/j.jde.2012.01.023. · Zbl 1236.35133 · doi:10.1016/j.jde.2012.01.023
[16] Y.H. Ding and B. Ruf, Solutions of a nonlinear Dirac equation with external fields, Arch. Rational Mech. Anal. 190 (2008), 57-82. doi:10.1007/s00205-008-0163-z. · Zbl 1161.35041 · doi:10.1007/s00205-008-0163-z
[17] Y.H. Ding and J.C. Wei, Stationary states of nonlinear Dirac equations with general potentials, Rev. Math. Phys. 20 (2008), 1007-1032. doi:10.1142/S0129055X0800350X. · Zbl 1170.35082 · doi:10.1142/S0129055X0800350X
[18] Y.H. Ding and T. Xu, Localized concentration of semi-classical states for nonlinear Dirac equations, Arch. Rational Mech. Anal. 216 (2015), 415-447. doi:10.1007/s00205-014-0811-4. · Zbl 1309.35102 · doi:10.1007/s00205-014-0811-4
[19] M.J. Esteban, M. Lewin and E. Séré, Variational methods in relativistic quantum mechanics, Bull. Amer. Math. Soc. 45 (2008), 535-593. doi:10.1090/S0273-0979-08-01212-3. · Zbl 1288.49016 · doi:10.1090/S0273-0979-08-01212-3
[20] M.J. Esteban and E. Séré, Stationary states of nonlinear Dirac equations: A variational approach, Comm. Math. Phys. 171 (1995), 323-350. doi:10.1007/BF02099273. · Zbl 0843.35114 · doi:10.1007/BF02099273
[21] M.J. Esteban and E. Séré, An overview on linear and nonlinear Dirac equations, Discrete Cotin. Dyn. Syst. 8 (2002), 281-397. · Zbl 1162.49307
[22] V. Felli, E. Marchini and S. Terracini, On Schrödinger operators with multipolar inverse-square potentials, J. Funct. Anal. 250 (2007), 265-316. doi:10.1016/j.jfa.2006.10.019. · Zbl 1222.35074 · doi:10.1016/j.jfa.2006.10.019
[23] V. Felli and S. Terracini, Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity, Comm. Partial Differential Equations 31 (2006), 469-495. doi:10.1080/03605300500394439. · Zbl 1206.35104 · doi:10.1080/03605300500394439
[24] G.M. Figueiredoa and M.T. Pimenta, Existence of ground state solutions to Dirac equations with vanishing potentials at infinity, J. Differential Equations 262 (2017), 486-505. doi:10.1016/j.jde.2016.09.034. · Zbl 1352.35141 · doi:10.1016/j.jde.2016.09.034
[25] R. Finkelstein, C. Fronsdal and P. Kaus, Nonlinear spinor field, Physical Review 103 (1956), 1571-1579. doi:10.1103/ PhysRev.103.1571. · Zbl 0073.44705 · doi:10.1103/PhysRev.103.1571
[26] W.M. Frank, D.J. Land and R.M. Spector, Singular potentials, Rev. Modern Phys. 43(1) (1971), 36-98. doi:10.1103/ RevModPhys.43.36. · doi:10.1103/RevModPhys.43.36
[27] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1983. · Zbl 0691.35001
[28] Q. Guo and J. Mederski, Ground states of nonlinear Schrödinger equations with sum of periodic and inverse-square potentials, J. Differential Equations 260 (2016), 4180-4202. doi:10.1016/j.jde.2015.11.006. · Zbl 1335.35232 · doi:10.1016/j.jde.2015.11.006
[29] L.H. Haddad and L.D. Carr, The nonlinear Dirac equation in Bose-Einstein condensates: Foundation and symmetries, Phys. D 238 (2009), 1413-1421. doi:10.1016/j.physd.2009.02.001. · Zbl 1167.82306 · doi:10.1016/j.physd.2009.02.001
[30] W. Kryszewki and A. Szulkin, Generalized linking theorem with an application to semilinear Schrödinger equation, Adv. Differential Equations 3 (1998), 441-472. · Zbl 0947.35061
[31] G.B. Li and A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part, Commun. Contemp. Math. 4 (2002), 763-776. doi:10.1142/S0219199702000853. · Zbl 1056.35065 · doi:10.1142/S0219199702000853
[32] P.L. Lions, The concentration compactness principle in the calculus of variations. The locally compact case. Part II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 223-283. doi:10.1016/S0294-1449(16)30422-X. · Zbl 0704.49004 · doi:10.1016/S0294-1449(16)30422-X
[33] F. Merle, Existence of stationary states for nonlinear Dirac equations, J. Different Equations 74 (1988), 50-68. doi:10. 1016/0022-0396(88)90018-6. · Zbl 0696.35154 · doi:10.1016/0022-0396(88)90018-6
[34] A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math. 73 (2005), 259-287. doi:10.1007/s00032-005-0047-8. · Zbl 1225.35222 · doi:10.1007/s00032-005-0047-8
[35] D. Qin, X. Tang and J. Zhang, Ground states for planar Hamiltonian elliptic systems with critical exponential growth, J. Differential Equations 308 (2022), 130-159. doi:10.1016/j.jde.2021.10.063. · Zbl 1478.35196 · doi:10.1016/j.jde.2021.10.063
[36] D. Ruiz and M. Willem, Elliptic problems with critical exponents and Hardy potentials, J. Differential Equations 190 (2003), 524-538. doi:10.1016/S0022-0396(02)00178-X. · Zbl 1163.35383 · doi:10.1016/S0022-0396(02)00178-X
[37] B. Simon, Schrodinger semigroups, Bull. Amer. Math. Soc. 7 (1982), 447-526. doi:10.1090/S0273-0979-1982-15041-8. · Zbl 0524.35002 · doi:10.1090/S0273-0979-1982-15041-8
[38] A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal. 257 (2009), 3802-3822. doi:10.1016/j.jfa.2009.09.013. · Zbl 1178.35352 · doi:10.1016/j.jfa.2009.09.013
[39] X.H. Tang, Non-Nehari manifold method for asymptotically periodic Schrödinger equations, Sci. China Math. 58 (2015), 715-728. doi:10.1007/s11425-014-4957-1. · Zbl 1321.35055 · doi:10.1007/s11425-014-4957-1
[40] B. Thaller, The Dirac Equation, Texts and Monographs in Physics, Springer, Berlin, 1992.
[41] Z.Q. Wang and X. Zhang, An infinite sequence of localized semiclassical bound states for nonlinear Dirac equations, Calc. Var. Partial Differ. Equ. 57 (2018), 56. doi:10.1007/s00526-018-1319-9. · Zbl 1403.35258 · doi:10.1007/s00526-018-1319-9
[42] M. Willem, Minimax Theorems, Birkhäuser, Berlin, 1996. · Zbl 0856.49001
[43] J. Zhang, J. Chen, Q. Li and W. Zhang, Concentration behavior of semiclassical solutions for Hamiltonian elliptic system, Adv. Nonlinear Anal. 10 (2021), 233-260. doi:10.1515/anona-2020-0126. · Zbl 1448.35177 · doi:10.1515/anona-2020-0126
[44] J. Zhang, X. Tang and W. Zhang, Ground state solutions for nonperiodic Dirac equation with superquadratic nonlinearity, J. Math. Phys. 54 (2013), 101502. doi:10.1063/1.4824132. · Zbl 1284.81134 · doi:10.1063/1.4824132
[45] J. Zhang, W. Zhang and X. Tang, Ground state solutions for Hamiltonian elliptic system with inverse square potential, Discrete Contin. Dyn. Syst. 37 (2017), 4565-4583. doi:10.3934/dcds.2017195. · Zbl 1370.35111 · doi:10.3934/dcds.2017195
[46] J. Zhang, W. Zhang and F. Zhao, Existence and exponential decay of ground-state solutions for a nonlinear Dirac equation, Z. Angew. Math. Phys. 69 (2018), 116. doi:10.1007/s00033-018-1009-7. · Zbl 1401.35070 · doi:10.1007/s00033-018-1009-7
[47] X. Zhang, On the concentration of semiclassical states for nonlinear Dirac equations, Discrete Contin. Dyn. Syst. 38 (2018), 5389-5413. doi:10.3934/dcds.2018238. · Zbl 1401.35256 · doi:10.3934/dcds.2018238
[48] X. Zhang and Z.Q. Wang, Semiclassical states of nonlinear Dirac equations with degenerate potential, Ann. Mate. Pura Appl. 198 (2019), 1955-1984. doi:10.1007/s10231-019-00849-6. · Zbl 1427.35222 · doi:10.1007/s10231-019-00849-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.