×

Regularity and symmetry results for nonlinear degenerate elliptic equations. (English) Zbl 1498.35019

Let \(\Omega\subset \mathbb{R}^N\) (\(N\geq 2\)) be an open set and let \(A:(0,+\infty)\rightarrow (0,+\infty)\), \(B:[0,+\infty)\rightarrow [0,+\infty)\) be \(C^1\)-functions satisfying the following conditions
(i) \(\displaystyle{-1<\inf_{t>0}\frac{tA'(t)}{A(t)}=:m_A\leq M_A:= \sup_{t>0}\frac{tA'(t)}{A(t)}<+\infty}\);
(ii) \(\displaystyle{\sup_{t>0}\frac{B'(t)}{tA(t)}<+\infty}\).
The authors study the local regularity of weak solutions to the degenerate elliptic equation \[ -\operatorname{div}(A(|\nabla u|)\nabla u)+B(|\nabla u|)=f\text{ in } \Omega,\tag{1} \] where \(f\in W^{1,\infty}(\Omega)\), and prove that, for each \(\beta \in [0,1)\) and \(\gamma<\max\{0,N-2\}\) and for each weak solution \(u\in C^{1,\alpha}(\Omega)\cap C^2(\Omega \setminus \{x\in \Omega: \nabla u=0\})\) of equation \((1)\), one has the estimate \[ \int_{B_\rho(x_0)}\frac{A(|\nabla u|)|\nabla u_i|^2}{|x-y|^\gamma|u_i|^\beta}\leq \mathcal{C}, \ \ \ \forall i=1,...,N, \text{ uniformly for } y\in B_\rho(x_0). \] Here, \(\displaystyle{u_i:=\frac{\partial u}{\partial x_i}}\), \(B_\rho(x_0)\) is any ball such that \(B_{2\rho}(x_0)\subset \Omega\), and the constant \(\mathcal{C}\) depends only on \(\gamma,m_A,M_A,\beta,f,\|\nabla u\|_\infty,\rho,x_0\).
As a corollary, the authors derive a local summability property of \((A(|\nabla u|))^{-1}\) under the further condition that \(\inf_{x\in B_{2\rho}(x_0)} |f(u(x))|>0\).
By applying the above regularity results and a weak comparison principle in small domains, the authors also obtain, via moving plane method, monotonicity and symmetry properties of positive solutions to the quasilinear degenerate elliptic problem \[ \left\{\begin{array}{ll} -\operatorname{div}(A(|\nabla u|)\nabla u)+B(|\nabla u|)=f(u), \text{ in }\Omega,\\ u=0 &\text{ on }\Omega \end{array}\right. \] where \(f:(0,+\infty)\rightarrow (0,+\infty)\) is a locally Lipschitz function, the function \(A\) satisfies \((i)\) and some additional monotonicity condition, and the function \(B\) satisfies \((ii)\) and \(B(0)=0\).

MSC:

35B06 Symmetries, invariants, etc. in context of PDEs
35B50 Maximum principles in context of PDEs
35B51 Comparison principles in context of PDEs
35B65 Smoothness and regularity of solutions to PDEs
35J62 Quasilinear elliptic equations
35J70 Degenerate elliptic equations

References:

[1] Alexandrov, A. D., A characteristic property of the spheres, Ann. Mat. Pura Appl., 58, 303-354 (1962) · Zbl 0107.15603
[2] Berestycki, H.; Nirenberg, L., On the method of moving planes and the sliding method, Bol. Soc. Bras. Mat. (N.S.), 22, 1, 1-37 (1991) · Zbl 0784.35025
[3] Biagi, S.; Esposito, F.; Vecchi, E., Symmetry and monotonicity of singular solutions of double phase problems, J. Differ. Equ., 280, 435-463 (2021) · Zbl 1471.35010
[4] Canino, A.; De Giorgio, E.; Sciunzi, B., Second order regularity for degenerate nonlinear elliptic equations, Discrete Contin. Dyn. Syst., 38, 8, 4231-4242 (2018) · Zbl 1401.35106
[5] Cianchi, A.; Maz’ya, V., Global Lipschitz regularity for a class of quasilinear elliptic equations, Commun. Partial Differ. Equ., 36, 100-133 (2011) · Zbl 1220.35065
[6] Cianchi, A.; Maz’ya, V., Global boundedness of the gradient for a class of nonlinear elliptic systems, Arch. Ration. Mech. Anal., 212, 129-177 (2014) · Zbl 1298.35070
[7] Cianchi, A.; Maz’ya, V., Second-order two-sided estimates in nonlinear elliptic problems, Arch. Ration. Mech. Anal., 229, 569-599 (2018) · Zbl 1398.35078
[8] Damascelli, L., Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 15, 4, 493-516 (1998) · Zbl 0911.35009
[9] Damascelli, L.; Pacella, F., Monotonicity and symmetry of solutions of p-Laplace equations, \(1 < p < 2\), via the moving plane method, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 26, 4, 689-707 (1998) · Zbl 0930.35070
[10] Damascelli, L.; Sciunzi, B., Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-Laplace equations, Calc. Var. Partial Differ. Equ., 25, 2, 139-159 (2006) · Zbl 1331.35130
[11] Damascelli, L.; Sciunzi, B., Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations, J. Differ. Equ., 206, 2, 483-515 (2004) · Zbl 1108.35069
[12] Di Benedetto, E., \( C^{1 + \alpha}\) local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7, 8, 827-850 (1983) · Zbl 0539.35027
[13] Esposito, F.; Merchán, S.; Montoro, L., Symmetry results for p-Laplacian systems involving a first order term, Ann. Mat. Pura Appl. (4), 200, 5, 2313-2331 (2021) · Zbl 1471.35129
[14] Esposito, F.; Montoro, L.; Sciunzi, B., Monotonicity and symmetry of singular solutions to quasilinear problems, J. Math. Pures Appl., 126, 9, 214-231 (2019) · Zbl 1418.35199
[15] Esposito, F.; Sciunzi, B., On the Höpf boundary lemma for quasilinear problems involving singular nonlinearities and applications, J. Funct. Anal., 278, 4, Article 108346 pp. (2020) · Zbl 1433.35149
[16] Gidas, B.; Ni, W. M.; Nirenberg, L., Symmetry and related properties via the maximum principle, Commun. Math. Phys., 68, 209-243 (1979) · Zbl 0425.35020
[17] Lieberman, G. M., Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12, 11, 1203-1219 (1988) · Zbl 0675.35042
[18] Merchán, S.; Montoro, L.; Peral, I.; Sciunzi, B., Existence and qualitative properties of solutions to a quasilinear elliptic equation involving the Hardy-Leray potential, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 31, 1, 1-22 (2014) · Zbl 1291.35082
[19] Murthy, M. K.V.; Stampacchia, G., Boundary value problems for some degenerate-elliptic operators, Ann. Mat. Pura Appl., 80, 4, 1-122 (1968) · Zbl 0185.19201
[20] Mingione, G., Regularity of minima: an invitation to the dark side of the calculus of variations, Appl. Math., 51, 4, 355-426 (2006) · Zbl 1164.49324
[21] Mingione, G., The Calderon-Zygmund theory for elliptic problems with measure data, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 6, 5, 195-261 (2007) · Zbl 1178.35168
[22] Pucci, P.; Serrin, J., The Maximum Principle (2007), Birkhäuser: Birkhäuser Boston · Zbl 1134.35001
[23] Riey, G., Regularity and weak comparison principles for double phase quasilinear elliptic equations, Discrete Contin. Dyn. Syst., 39, 8, 4863-4873 (2019) · Zbl 1421.35180
[24] Sciunzi, B., Some results on the qualitative properties of positive solutions of quasilinear elliptic equations, NoDEA Nonlinear Differ. Equ. Appl., 14, 3-4, 315-334 (2007) · Zbl 1162.35006
[25] Sciunzi, B., Regularity and comparison principles for p-Laplace equations with vanishing source term, Commun. Contemp. Math., 16, 6, Article 1450013 pp. (2014) · Zbl 1323.35050
[26] Serrin, J., A symmetry problem in potential theory, Arch. Ration. Mech. Anal., 43, 304-318 (1971) · Zbl 0222.31007
[27] Serrin, J.; Zou, H., Symmetry of ground states of quasilinear elliptic equations, Arch. Ration. Mech. Anal., 148, 4, 265-290 (1999) · Zbl 0940.35079
[28] Teixeira, E., Regularity for quasilinear equations on degenerate singular sets, Math. Ann., 358, 1-2, 241-256 (2014) · Zbl 1286.35119
[29] Tolksdorf, P., Regularity for a more general class of quasilinear elliptic equations, J. Differ. Equ., 51, 1, 126-150 (1984) · Zbl 0488.35017
[30] Trudinger, N. S., Linear elliptic operators with measurable coefficients, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 27, 3, 265-308 (1973) · Zbl 0279.35025
[31] Zhikov, V. V., Weighted Sobolev spaces, Sb. Math., 189, 8, 1139-1170 (1998) · Zbl 0919.46026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.