×

Vector bundles on Fano threefolds and \(K3\) surfaces. (English) Zbl 1498.14113

Let \(X\) be a Fano threefold, and let \(S\subset X\) be a \(K3\) surface. Let \(\mathcal{M}_X\) be an irreducible component of a moduli space of simple vector bundles on \(X\) such that their restriction to \(S\) belongs to a moduli space \(M_S\). In a 1990 preprint [The moduli spaces of vector bundles on threefolds, surfaces and curves I. in: Vector bundles. Göttingen: Universitätsverlag Göttingen. 176–213 (2008)], A. Tyurin remarked that if \(\mathrm{H}^2(X,\mathrm{End}(E)) = 0\) for all \(E\in \mathcal{M}_X\), then the restriction map is a local isomorphism to a Lagrangian subvariety of \(\mathcal{M}_S\) (recall that \(\mathcal{M}_S\) has a natural holomorphic symplectic structure).
In this paper the author provides many examples where this result can be applied, focussing on the cases where \(X\) is a prime Fano threefold of index 1 or 2, and \(S\) is a smooth surface in the anticanonical system of \(X\). Then by using the Serre construction and working with rank 2 vector bundles, the author describes how to obtain Lagrangian subvarieties of \(\mathcal{M}_S\).
More precisely, the following cases (under suitable further conditions) are considered:
\(X\subset \mathbb{P}^4\) a cubic threefold, \(M_X\) is the Fano surface of lines contained in \(X\) and \(M_S=S^{[2]}\);
\(X\subset \mathbb{P}^5\) the intersection of two quadrics;
\(X\subset \mathbb{P}^6\) a Fano threefold of index 2 and degree 5, \(M_X\) and \(M_S\) consist of one reduced point;
\(X_d\subset \mathbb{P}^d\) a Fano threefold of index 2 and degree \(d = 3, 4, 5\), \(M_S\) is the O’Grady hyperkähler manifold \(OG_{10}\);
\(X\subset \mathbb{P}^6\) intersection of three quadrics: in this case the image of the restriction map from \(M_X\) to \(M_S\) is singular;
\(X_g\subset \mathbb{P}^{g+1}\) a Fano threefold of index 1 and genus \(g\): then \(M_S=OG_{10}\).

MSC:

14J60 Vector bundles on surfaces and higher-dimensional varieties, and their moduli
14D20 Algebraic moduli problems, moduli of vector bundles
14J45 Fano varieties
14J30 \(3\)-folds
14J28 \(K3\) surfaces and Enriques surfaces

References:

[1] Arbarello, E.; Cornalba, M.; Griffiths, P., Geometry of Algebraic Curves, Volume II. Grund. der Math. Wiss. (2011), Heidelberg: Springer, Heidelberg · Zbl 1235.14002 · doi:10.1007/978-3-540-69392-5
[2] Altman, A.; Kleiman, S., Compactifying the Picard scheme, Adv. Math., 35, 1, 50-112 (1980) · Zbl 0427.14015 · doi:10.1016/0001-8708(80)90043-2
[3] Beauville, A., Variétés de Prym et jacobiennes intermédiaires, Ann. Sci. Éc. Norm. Sup., 10, 309-391 (1977) · Zbl 0368.14018 · doi:10.24033/asens.1329
[4] Beauville, A., Determinantal hypersurfaces, Mich. Math. J., 48, 39-64 (2000) · Zbl 1076.14534 · doi:10.1307/mmj/1030132707
[5] Beauville, A., Vector bundles on the cubic threefold, Contemp. Math., 312, 71-86 (2002) · Zbl 1056.14059 · doi:10.1090/conm/312/04987
[6] Beauville, A., An introduction to Ulrich bundles, Eur. J. Math., 4, 1, 26-36 (2018) · Zbl 1390.14130 · doi:10.1007/s40879-017-0154-4
[7] Brambilla, M-C; Faenzi, D., Moduli spaces of rank-2 ACM bundles on prime Fano threefolds, Mich. Math. J., 60, 1, 113-148 (2011) · Zbl 1223.14047 · doi:10.1307/mmj/1301586307
[8] Hartshorne, R., Stable vector bundles of rank 2 on \(P^3\), Math. Ann., 238, 3, 229-280 (1978) · Zbl 0411.14002 · doi:10.1007/BF01420250
[9] Hassett, B., Special cubic fourfolds, Compos. Math., 120, 1, 1-23 (2000) · Zbl 0956.14031 · doi:10.1023/A:1001706324425
[10] Huybrechts, D.; Lehn, M., The Geometry of Moduli Spaces of Sheaves (2010), Cambridge: Cambridge University Press, Cambridge · Zbl 1206.14027 · doi:10.1017/CBO9780511711985
[11] Mukai, S., Symplectic structure of the moduli space of sheaves on an abelian or K3 surface, Invent. Math., 77, 1, 101-116 (1984) · Zbl 0565.14002 · doi:10.1007/BF01389137
[12] Mukai, S.: On the Moduli Space of Bundles on K3 Surfaces, I. Vector Bundles on Algebraic Varieties (Bombay, 1984), vol. 11, pp. 341-413. Tata Institute of Fundamental Research Studies in Mathematics, Bombay (1987) · Zbl 0674.14023
[13] Saccà, G.: Birational geometry of the intermediate Jacobian fibration of a cubic fourfold. Preprint. arXiv:2002.01420
[14] Tyurin, A.: The moduli spaces of vector bundles on threefolds, surfaces and curves, I. In: Vector Bundles. Collected Works, vol. I, pp. 176-213. Universitätsverlag Göttingen, Göttingen (2008) · Zbl 1339.01010
[15] Voisin, C.: Hodge Theory and Complex Algebraic Geometry, II. Cambridge Studies in Advanced Mathematics, vol. 77. Cambridge University Press, Cambridge (2007) · Zbl 1129.14020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.