×

A note on highly Kummer-faithful fields. (English) Zbl 1498.11230

Summary: We introduce a notion of highly Kummer-faithful fields and study its relationship with the notion of Kummer-faithful fields. We also give some examples of highly Kummer-faithful fields. For example, if \(k\) is a number field of finite degree over \(\mathbb{Q}, g\) is an integer \(> 0\) and \(\mathbf{m}=(m_p)_p\) is a family of non-negative integers, where \(p\) ranges over all prime numbers, then the extension field \(k_{g,\mathbf{m}}\) obtained by adjoining to \(k\) all coordinates of the elements of the \(p^{m_p}\)-torsion subgroup \(A[p^{m_p}]\) of \(A\) for all semi-abelian varieties \(A\) over \(k\) of dimension at most \(g\) and all prime numbers \(p\), is highly Kummer-faithful.

MSC:

11S15 Ramification and extension theory
11S20 Galois theory
14K05 Algebraic theory of abelian varieties

References:

[1] N. Bourbaki, Éléments de mathématique. Topologie générale, Chapitres 1 à 4, Hermann, Paris, 1971 (in French). · Zbl 0213.04103
[2] X. Caruso and T. Liu, Some bounds for ramification of \(p^n\)-torsion semi-stable representations, J. Algebra 325 (2011), 70-96. · Zbl 1269.14001
[3] B. Conrad, Chow’s \(K/k\)-image and \(K/k\)-trace, and the Lang-Néron theorem, Enseign. Math. (2) 52 (2006), 37-108. · Zbl 1133.14028
[4] P. Deligne, La conjecture de Weil I, Publ. Math. IHES 43 (1974), 273-308 (in French). · Zbl 0287.14001
[5] P. Deligne, La conjecture de Weil II, Publ. Math. IHES 52 (1980), 137-252 (in French). · Zbl 0456.14014
[6] J.-M. Fontaine and B. Mazur, Geometric Galois representations, Elliptic curves, modular forms and Fermat’s last theorem (Hong Kong, 1993), Int. Press, Cambridge, MA, 1995, 41-78. · Zbl 0839.14011
[7] A. Grothendieck, Modèles de Néron et monodromie, Groupes de Monodromie en Géometrie Algébrique, SGA 7, Lecture notes in mathematics, 288 1972, 313-523 (in French). · Zbl 0248.14006
[8] S. Hattori, On a ramification bound of torsion semi-stable representations over a local field, J. Number Theory 129 (2009), 2474-2503. · Zbl 1205.11127
[9] Y. Hoshi, On the Grothendieck conjecture for affine hyperbolic curves over Kummer-faithful fields, Kyushu J. Math. 71 (2017), 1-29. · Zbl 1388.14088
[10] U. Jannsen, Weights in arithmetic geometry, Japanese J. Math. 5 (2010), 73-102. · Zbl 1204.14011
[11] S. Lang and A. Néron, Rational points of abelian varieties over function fields, Amer. J. Math. 81 (1959), 95-118. · Zbl 0099.16103
[12] T. Liu, A note on lattices in semi-stable representations, Math. Ann. 346 (2010), 117-138. · Zbl 1208.14017
[13] A. Mattuck, Abelian varieties over \(p\)-adic ground fields, Ann. of Math. (2) 62 (1955), 92-119. · Zbl 0066.02802
[14] H. Minkowski, Zur Theorie der positiven quadratischen Formen, J. Reine Angew. Math. 101 (1887), 196-202. · JFM 19.0189.01
[15] S. Mochizuki, The local pro-\(p\) anabelian geometry of curves, Invent. Math. 138 (1999), 319-423. · Zbl 0935.14019
[16] S. Mochizuki, Topics in absolute anabelian geometry III: Global reconstruction algorithms, J. Math. Sci. Univ. Tokyo 22 (2015), 939-1156. · Zbl 1358.14024
[17] S. Ohtani, Kummer-faithful fields which are not sub-\(p\)-adic, in preparation.
[18] Y. Ozeki, Torsion of algebraic groups and iterate extensions associated with Lubin-Tate formal groups, preprint: arXiv:2105.11049.
[19] J.-P. Serre, Corps locaux, Deuxième édition, Publications de l’Université de Nancago, No. VIII, Hermann, Paris, 1968.
[20] J.-P. Serre, Abelian \(l\)-adic representations and elliptic curves, With the collaboration of Willem Kuyk and John Labute, second ed., Advanced Book Classics, Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA, 1989. · Zbl 0709.14002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.