×

Multiplication theorems for self-conjugate partitions. (English) Zbl 1498.05024

Summary: In 2011, G.-N. Han and K. Q. Ji [Trans. Am. Math. Soc. 363, No. 2, 1041–1060 (2011; Zbl 1227.05040)] proved addition-multiplication theorems for integer partitions, from which they derived modular analogues of many classical identities involving hook-length. In the present paper, we prove addition-multiplication theorems for the subset of self-conjugate partitions. Although difficulties arise due to parity questions, we are almost always able to include the BG-rank introduced by A. Berkovich and F. G. Garvan [Trans. Am. Math. Soc. 358, No. 2, 703–726 (2006; Zbl 1088.11073)]. This gives us as consequences many self-conjugate modular versions of classical hook-lengths identities for partitions. Our tools are mainly based on fine properties of the Littlewood decomposition restricted to self-conjugate partitions.

MSC:

05A15 Exact enumeration problems, generating functions
05A17 Combinatorial aspects of partitions of integers
05A19 Combinatorial identities, bijective combinatorics
05E05 Symmetric functions and generalizations
05E10 Combinatorial aspects of representation theory
11P81 Elementary theory of partitions

References:

[1] George E. Andrews and Jørn B. Olsson. Partition identities with an application to group representation theory. J. Reine Angew. Math., 413:198-212, 1991. · Zbl 0704.20003
[2] A. Bernal. On self-Mullineux and self-conjugate partitions. Electron. J. Combin., 28(1):Paper No. 1.57, 33, 2021. doi:10.37236/9283. · Zbl 1535.20073 · doi:10.37236/9283
[3] C. Bessenrodt. On hooks of Young diagrams. Ann. Comb., 2(2):103-110, 1998. doi:10.1007/BF01608481. · Zbl 0929.05091 · doi:10.1007/BF01608481
[4] A. Berkovich and F. G. Garvan. On the Andrews-Stanley refinement of Ramanu-jan’s partition congruence modulo 5 and generalizations. Trans. Amer. Math. Soc., 358(2):703-726, 2006. doi:10.1090/S0002-9947-05-03751-7. · Zbl 1088.11073 · doi:10.1090/S0002-9947-05-03751-7
[5] O. Brunat and J.-B. Gramain. A basic set for the alternating group. J. Reine Angew. Math., 641:177-202, 2010. doi:10.1515/CRELLE.2010.033. · Zbl 1203.20009 · doi:10.1515/CRELLE.2010.033
[6] Roland Bacher and Laurent Manivel. Hooks and powers of parts in partitions. Sém. Lothar. Combin., 47:Art. B47d, 11, 2001/02. · Zbl 1021.05008
[7] H. Cho, J.S. Huh, and J. Sohn. A bijection between ordinary partitions and self-conjugate partitions with same disparity. Sém. Lothar. Combin., 82B:Art. 30, 12, 2020. · Zbl 1436.05016
[8] Kevin Carde, Joe Loubert, Aaron Potechin, and Adrian Sanborn. Proof of han’s hook expansion conjecture. 2008. arXiv:0808.0928.
[9] J. S. Frame, G. de B. Robinson, and R. M. Thrall. The hook graphs of the symmetric groups. Canad. J. Math., 6:316-324, 1954. doi:10.4153/cjm-1954-030-1. · Zbl 0055.25404 · doi:10.4153/cjm-1954-030-1
[10] F. Garvan, D. Kim, and D. Stanton. Cranks and t-cores. Invent. Math., 101(1):1-17, 1990. doi:10.1007/BF01231493. · Zbl 0721.11039 · doi:10.1007/BF01231493
[11] G.-N. Han. Some conjectures and open problems on partition hook lengths. Exper-iment. Math., 18(1):97-106, 2009. · Zbl 1167.05004
[12] G.-N. Han. The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications. Ann. Inst. Fourier (Grenoble), 60(1):1-29, 2010. · Zbl 1215.05013
[13] G.-N. Han and K. Q. Ji. Combining hook length formulas and BG-ranks for parti-tions via the Littlewood decomposition. Trans. Amer. Math. Soc., 363(2):1041-1060, 2011. doi:10.1090/S0002-9947-2010-05191-8. · Zbl 1227.05040 · doi:10.1090/S0002-9947-2010-05191-8
[14] M. D. Hirschhorn and J. A. Sellers. On representations of a number as a sum of three squares. Discrete Math., 199(1-3), 1999. doi:10.1016/S0012-365X(98) 00288-X. · Zbl 0946.11010 · doi:10.1016/S0012-365X(98)00288-X
[15] G.-N. Han and H. Xiong. Polynomiality of Plancherel averages of hook-content sum-mations for strict, doubled distinct and self-conjugate partitions. J. Combin. Theory Ser. A, 168:50-83, 2019. doi:10.1016/j.jcta.2019.05.012. · Zbl 1421.05015 · doi:10.1016/j.jcta.2019.05.012
[16] M. E. H. Ismail. Classical and quantum orthogonal polynomials in one variable, volume 98 of Encyclopedia of Mathematics and its Applications. Cambridge Uni-versity Press, Cambridge, 2005. With two chapters by Walter Van Assche, With a foreword by Richard A. Askey. doi:10.1017/CBO9781107325982. · Zbl 1082.42016 · doi:10.1017/CBO9781107325982
[17] G. James and A. Kerber. The representation theory of the symmetric group, vol-ume 16 of Encyclopedia of Mathematics and its Applications. Addison-Wesley Pub-lishing Co., Reading, Mass., 1981. With a foreword by P. M. Cohn, With an intro-duction by Gilbert de B. Robinson. · Zbl 0491.20010
[18] D. E. Littlewood. The Theory of Group Characters and Matrix Representations of Groups. Oxford University Press, New York, 1940. · JFM 66.0093.02
[19] I. G. Macdonald. Affine root systems and Dedekind’s η-function. Invent. Math., 15:91-143, 1972. doi:10.1007/BF01418931. · Zbl 0244.17005 · doi:10.1007/BF01418931
[20] N. A. Nekrasov and A. Okounkov. Seiberg-Witten theory and random partitions. In The unity of mathematics, volume 244 of Progr. Math., pages 525-596. Birkhäuser Boston, Boston, MA, 2006. doi:10.1007/0-8176-4467-9_15. · Zbl 1233.14029 · doi:10.1007/0-8176-4467-9_15
[21] G. Panova. Polynomiality of some hook-length statistics. Ramanujan J., 27(3):349-356, 2012. doi:10.1007/s11139-011-9332-z. · Zbl 1244.05230 · doi:10.1007/s11139-011-9332-z
[22] M. Pétréolle. A Nekrasov-Okounkov type formula forC. In Proceedings of FPSAC 2015, Discrete Math. Theor. Comput. Sci. Proc., pages 535-546. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2015. · Zbl 1335.05014
[23] M. Pétréolle. Quelques développements combinatoires autour des groupes de Cox-eter et des partitions d’entiers. Theses, Université Claude Bernard -Lyon I, Novem-ber 2015. URL: https://tel.archives-ouvertes.fr/tel-01325290.
[24] R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. doi:10.1017/ CBO9780511609589. · Zbl 0945.05006 · doi:10.1017/CBO9780511609589
[25] R. P. Stanley. Some combinatorial properties of hook lengths, contents, and parts of partitions. · Zbl 1234.05234
[26] Ramanujan J., 23(1-3):91-105, 2010. doi:10.1007/ s11139-009-9185-x. · Zbl 1234.05234 · doi:10.1007/s11139-009-9185-x
[27] G. Szegő. Orthogonal polynomials. American Mathematical Society Colloquium Publications, Vol. XXIII. American Mathematical Society, Providence, R.I., fourth edition, 1975. · Zbl 0305.42011
[28] B. W. Westbury. Universal characters from the Macdonald identities. Adv. Math., 202(1):50-63, 2006. doi:10.1016/j.aim.2005.03.013. · Zbl 1106.17009 · doi:10.1016/j.aim.2005.03.013
[29] A. Walsh and S. O. Warnaar. Modular Nekrasov-Okounkov formulas. Sém. Lothar. Combin., 81:Art. B81c, 28, 2020. · Zbl 1441.05022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.