×

An efficient operational matrix technique to solve the fractional order non-local boundary value problems. (English) Zbl 1497.92373

Summary: This article deals with constructing an operational matrix method based on fractional-order Lagrange polynomials to solve the non-local boundary value problems (BVPs) of fractional order arising in chemical reactor theory. In the proposed numerical technique, first, we determine the operational matrix of integer and fractional derivatives. Using the obtained operational matrix and collocation at the nodal points, we get a system of algebraic equations, which can be easily solved for the unknown coefficients of that system. The convergence analysis of the proposed method also has been carried out. Some numerical examples show that this method is simple to use and gives high accuracy, even with a small number of fractional order Lagrange polynomials.

MSC:

92E20 Classical flows, reactions, etc. in chemistry
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
34A08 Fractional ordinary differential equations
15A99 Basic linear algebra
Full Text: DOI

References:

[1] Magin, RL, Fractional Calculus in Bioengineering (2006), Redding: Begell House, Redding
[2] Ortigueira, MD, Introduction to fractional linear systems. Part 2: discrete-time case, IEE Proc. Vis. Image Signal Process., 147, 1, 71-78 (2000) · doi:10.1049/ip-vis:20000273
[3] Miller, KS; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993), New York: Wiley, New York · Zbl 0789.26002
[4] Podlubny, I., Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications (1999), San Diego: Academic Press, San Diego · Zbl 0924.34008
[5] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. In: North Holland Mathematics Studies, Vol. 204, Elsevier Publsihers BV, Amsterdam (2006) · Zbl 1092.45003
[6] Duan, J-S; Rach, R.; Baleanu, D.; Wazwaz, A-M, A review of the adomian decomposition method and its applications to fractional differential equations, Commun. Frac. Calc., 3, 73-99 (2012)
[7] Jafari, H.; Daftardar-Gejji, V., Solving a system of nonlinear fractional differential equations using adomian decomposition, J. Comput. Appl. Math., 196, 644-651 (2006) · Zbl 1099.65137 · doi:10.1016/j.cam.2005.10.017
[8] Wu, G-C, A fractional variational iteration method for solving fractional nonlinear differential equations, Comput. Math. Appl., 61, 2186-2190 (2011) · Zbl 1219.65085 · doi:10.1016/j.camwa.2010.09.010
[9] Odibat, ZM; Momani, S., Application of variational iteration method to nonlinear differential equations of fractional order, Int. J. Nonlinear Sci. Numer. Simul., 7, 27 (2006) · Zbl 1401.65087 · doi:10.1515/IJNSNS.2006.7.1.27
[10] Kumar, S.; Gupta, V., An application of variational iteration method for solving fuzzy time-fractional diffusion equations, Neural. Comput. Appl., 33, 24, 17659-17668 (2021) · doi:10.1007/s00521-021-06354-3
[11] Abdulaziz, O.; Hashim, I.; Momani, S., Application of homotopy-perturbation method to fractional ivps, J. Comput. Appl. Math., 216, 574-584 (2008) · Zbl 1142.65104 · doi:10.1016/j.cam.2007.06.010
[12] Odibat, Z.; Momani, S.; Xu, H., A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations, Appl. Math. Model., 34, 593-600 (2010) · Zbl 1185.65139 · doi:10.1016/j.apm.2009.06.025
[13] Yuanlu, L., Solving a nonlinear fractional differential equation using Chebyshev wavelets, Commun. Nonlinear Sci. Numer. Simul., 15, 2284-2292 (2010) · Zbl 1222.65087 · doi:10.1016/j.cnsns.2009.09.020
[14] Doha, E.; Bhrawy, A.; Ezz-Eldien, S., A new Jacobi operational matrix: an application for solving fractional differential equations, Appl. Math. Model., 36, 4931-4943 (2012) · Zbl 1252.34019 · doi:10.1016/j.apm.2011.12.031
[15] ur Rehman, M.; Khan, RA, The legendre wavelet method for solving fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 16, 4163-4173 (2011) · Zbl 1222.65063 · doi:10.1016/j.cnsns.2011.01.014
[16] Saadatmandi, A., Bernstein operational matrix of fractional derivatives and its applications, Appl. Math. Model., 38, 1365-1372 (2014) · Zbl 1427.65134 · doi:10.1016/j.apm.2013.08.007
[17] Sabermahani, S.; Ordokhani, Y.; Yousefi, S., Numerical approach based on fractional-order lagrange polynomials for solving a class of fractional differential equations, Comput. Appl. Math., 37, 3846-3868 (2018) · Zbl 1404.65078 · doi:10.1007/s40314-017-0547-5
[18] Chen, C.; Fife, P., Nonlocal models of phase transitions in solids, Adv. Math. Sci. Appl., 10, 821-849 (2000) · Zbl 0977.74044
[19] Furter, J.; Grinfeld, M., Local vs. non-local interactions in population dynamics, J. Math. Biol., 27, 65-80 (1989) · Zbl 0714.92012 · doi:10.1007/BF00276081
[20] Lacey, A., Thermal runaway in a non-local problem modelling ohmic heating. Part ii: General proof of blow-up and asymptotics of runaway, Eur. J. Appl. Math., 6, 201-224 (1995) · Zbl 0849.35058 · doi:10.1017/S0956792500001807
[21] Cushman, J.; Xu, H.; Deng, F., Nonlocal reactive transport with physical and chemical heterogeneity: localization error, Water Resour. Res., 31, 2219-2237 (1995) · doi:10.1029/95WR01396
[22] Dehghan, M., Efficient techniques for the second-order parabolic equations subject to nonlocal specifications, App. Numer. Math., 52, 39-62 (2005) · Zbl 1063.65079 · doi:10.1016/j.apnum.2004.02.002
[23] Zaheeruddin, M.; Ahsan, M.; Ahmad, W.; Khan, EM; Emad, A.; Abdel-Haleem, Meshless analysis of nonlocal boundary value problems in anisotropic and inhomogeneous media, Mathematics, 8, 11, 2045 (2020) · doi:10.3390/math8112045
[24] Infante, G.; Pietramala, P.; Tenuta, M., Existence and localization of positive solutions for a nonlocal bvp arising in chemical reactor theory, Commun. Nonlinear Sci. Numer. Simul., 19, 7, 2245-2251 (2014) · Zbl 1457.34043 · doi:10.1016/j.cnsns.2013.11.009
[25] Markus, L.; Amundson, NR, Nonlinear boundary-value problems arising in chemical reactor theory, Int. J. Differ. Equ., 4, 1, 102-113 (1968) · Zbl 0155.13301 · doi:10.1016/0022-0396(68)90050-8
[26] N. Madbouly, McGhee, G. Roach, Adomian’s method for hammerstein integral equations arising from chemical reactor theory. Appl. Math. Comput. 117(2-3), 241-249 (2001) · Zbl 1023.65143
[27] Rashidinia, J.; Zarebnia, M., New approach for numerical solution of hammerstein integral equations, Appl. Math. Comput., 185, 1, 147-154 (2007) · Zbl 1110.65126 · doi:10.1016/j.amc.2006.07.017
[28] Kumar, S.; Sloan, IH, A new collocation-type method for hammerstein integral equations, Math. Comput., 48, 178, 585-593 (1987) · Zbl 0616.65142 · doi:10.1090/S0025-5718-1987-0878692-4
[29] Hashemizadeh, E.; Rostami, M., Numerical solution of hammerstein integral equations of mixed type using the sinc-collocation method, J. Comput. Appl. Math., 279, 31-39 (2015) · Zbl 1306.65291 · doi:10.1016/j.cam.2014.10.019
[30] Razzaghi, M.; Ordokhani, Y., Solution of nonlinear volterra-hammerstein integral equations via rationalized haar functions, Math. Probl. Eng., 7, 2, 205-219 (2001) · Zbl 0990.65152 · doi:10.1155/S1024123X01001612
[31] A. Horvat-Marc, C. Ţicalǎ, Localization of solutions for a problem arising in the theory of adiabatic tubular chemical reactors, Carpathian J. Math. (2004) 187-192 · Zbl 1086.47520
[32] Saadatmandi, A.; Razzaghi, M.; Dehghan, M., Sinc-galerkin solution for nonlinear two-point boundary value problems with applications to chemical reactor theory, Math. Comput. Model., 42, 11-12, 1237-1244 (2005) · Zbl 1085.65065 · doi:10.1016/j.mcm.2005.04.008
[33] Ali, MR; Baleanu, D., New wavelet method for solving boundary value problems arising from an adiabatic tubular chemical reactor theory, Int. J. Biomath., 13, 7, 2050059 (2020) · Zbl 07336044 · doi:10.1142/S179352452050059X
[34] Geng, F.; Cui, M., A reproducing kernel method for solving nonlocal fractional boundary value problems, Appl. Math. Lett., 25, 818-823 (2012) · Zbl 1242.65144 · doi:10.1016/j.aml.2011.10.025
[35] Ahmad, B.; Sivasundaram, S., On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order, Appl. Math. Comput., 217, 480-487 (2010) · Zbl 1207.45014 · doi:10.1016/j.amc.2010.05.080
[36] Zhong, W.; Lin, W., Nonlocal and multiple-point boundary value problem for fractional differential equations, Comput. Math. Appl., 59, 1345-1351 (2010) · Zbl 1189.34036 · doi:10.1016/j.camwa.2009.06.032
[37] ur Rehman, M.; Khan, RA, Existence and uniqueness of solutions for multi-point boundary value problems for fractional differential equations, Appl. Math. Lett., 23, 1038-1044 (2010) · Zbl 1214.34007 · doi:10.1016/j.aml.2010.04.033
[38] Bai, Z., On positive solutions of a nonlocal fractional boundary value problem, Nonlinear Anal. Theory Methods Appl., 72, 916-924 (2010) · Zbl 1187.34026 · doi:10.1016/j.na.2009.07.033
[39] Salem, HA, On the fractional order m-point boundary value problem in reflexive banach spaces and weak topologies, J. Comput. Appl. Math., 224, 565-572 (2009) · Zbl 1176.34070 · doi:10.1016/j.cam.2008.05.033
[40] Zhang, H-E, Nonlocal boundary value problems of fractional order at resonance with integral conditions, Adv. Differ. Equ., 326, 1-12 (2017) · Zbl 1444.34046
[41] Odibat, ZM; Shawagfeh, NT, Generalized taylor’s formula, Appl. Math. Comput., 186, 286-293 (2007) · Zbl 1122.26006 · doi:10.1016/j.amc.2006.07.102
[42] Krishnasamy, VS; Mashayekhi, S.; Razzaghi, M., Numerical solutions of fractional differential equations by using fractional taylor basis, IEEE/CAA J. Autom. Sin., 4, 98-106 (2017) · doi:10.1109/JAS.2017.7510337
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.