×

A new method to investigate almost periodic solutions for an Nicholson’s blowflies model with time-varying delays and a linear harvesting term. (English) Zbl 1497.92218


MSC:

92D25 Population dynamics (general)
34K14 Almost and pseudo-almost periodic solutions to functional-differential equations

References:

[1] A.L. Nicholson, An outline of the dynamics of animal populations, Aust. J. Zool., 2 (1954), 9-65.
[2] W.S. Gurney, S.P. Blythe and R.M. Nisbet, Nicholson’s blowflies revisited, Nat., 287 (1980), 17-21.
[3] M.R.S. Kulenovic, G. Ladas and Y.G. Sficas, Global attractivity in population dynamics, Comput. Math. Appl., 18 (1989), 925-928. · Zbl 0686.92019
[4] J.W.H. So and J.S. Yu, On the stability and uniform persistence of a discrete model of Nicholson’s blowflies, J. Math. Anal. Appl., 193 (1995), 233-244. · Zbl 0834.39009
[5] X.H. Ding and W.X. Li, Stability and bifurcation of numerical discretization Nicholson’s blowflies equation with delay, Discrete Dyn. Nat. Soc., 2006 (2006),19413. · Zbl 1106.92065
[6] S.H. Saker and B.G. Zhang, Oscillation in a discrete partial delay Nicholson’s blowflies model,Math. Comput. Modelling, 36 (2002), 1021-1026. · Zbl 1021.92042
[7] J.W.LiandC.X.Du, ExistenceofpositiveperiodicsolutionsforageneralizedNicholson’sblowflies model, J. Comput. Appl. Math., 221 (2008), 226-233. · Zbl 1147.92031
[8] W.T. Li and Y.H. Fan, Existence and global attractivity of positive periodic solutions for the impulsive delay Nicholson’s blowflies model, J. Comput. Appl. Math., 201 (2007), 55-68. · Zbl 1117.34065
[9] B.G. Zhang and H.X. Xu, A note on the global attractivity of a discrete model of Nicholson’s blowflies, Discrete Dyn. Nat. Soc., 3 (1999), 51-55. · Zbl 0962.39011
[10] J.J. Wei and Michael Y. Li, Hopf bifurcation analysis in a delayed Nicholson’s blowflies equation,Nonlinear Anal., 60 (2005), 1351-1367. · Zbl 1144.34373
[11] S.H. Saker and S. Agarwal, Oscillation and global attractivity in a periodic Nicholson’s blowflies model, Math. Comput. Modelling, 35 (2002), 719-731. · Zbl 1012.34067
[12] B.W. Liu, Global dynamic behaviors for a delayed Nicholson’s blowflies model with a linear harvesting term, Electron. J. Qual. Theor. Diff. Equat., 45 (2013), 1-13. · Zbl 1340.34320
[13] J.O. Alzabut, Almost periodic solutions for an impulsive delay Nicholson’s blowflies model, J. Comput. Appl. Math., 234 (2010), 233-239. · Zbl 1196.34095
[14] T. Faria, Global asymptotic behaviour for a Nicholson model with path structure and multiple delays, Nonlinear Anal., 74 (2011) 7033-7046. · Zbl 1243.34116
[15] L.V. Hien, Global asymptotic behaviour of positive solutions to a non-autonomous Nicholson’s blowflies model with delays, J. Biol. Dyn., 8 (2014), 135-144. · Zbl 1448.92215
[16] P. Amster and A. Deboli, Existence of positive T-periodic solutions of a generalized Nicholson’s blowflies model with a nonlinear harvesting term, Appl. Math. Lett., 25 (2012), 1203-1207. · Zbl 1351.34078
[17] C.J. Xu, M.X. Liao and Y.C. Pang, Existence and convergence dynamics of pseudo almost periodic solutions for Nicholson’s blowflies model with time-varying delays and a harvesting term, Acta Appl. Math., 146 (2016), 95-112. · Zbl 1361.34095
[18] H. Zhou, Z.F. Zhou and Z.M. Qiao, Mean-square almost periodic solution for impulsive stochastic Nicholson’s blowflies model with delays, Appl. Mathe. Comput., 219 (2013), 5943-5948. · Zbl 1273.92048
[19] C.J. Xu, P.L. Li and Y.C. Pang, Exponential stability of almost periodic solutions for memristor-based neural networks with distributed leakage delays, Neural Comput., 28 (2016), 2726-2756. · Zbl 1482.34199
[20] Z.J. Yao, Existence and exponential stability of the unique positive almost periodic solution for impulsive Nicholson’s blowflies model with linear harvesting term, Appl. Math. Modelling, 39 (2015), 7124-7133. · Zbl 1443.92040
[21] L.G. Yao, Dynamics of Nicholson’s blowflies models with a nonlinear density-dependent mortality,Appl. Math. Modelling, 64 (2018), 185-195. · Zbl 1480.92184
[22] L. Berezansky, E. Braverman and L. Idels, Nicholson’s blowflies differential equations revised: Main results and open problem, Appl. Math. Modelling, 34 (2010), 1405-1417. · Zbl 1193.34149
[23] A.M. Fink, Almost Periodic Differential Equations(Lecture Notes in Mathematics), 1974th edition, Springer, Berlin, 1974. · Zbl 0325.34039
[24] C.Y. He, Almost Periodic Differential Equation, Higher Education Publishing House, Beijing, 1992.
[25] F. Long, Positive almost periodic solution for a class of Nicholson’s blowflies model with a linear harvesting term, Nonlinear Anal.: Real World Appl., 13 (2012), 686-693. · Zbl 1238.34131
[26] H.S. Ding and J.J. Nieto, A new approach for positive almost solutions to a class of Nicholson’s blowflies model, J. Comput. Appl. Math., 253 (2013), 249-254. · Zbl 1288.92017
[27] X.A. Hao, M.Y. Zuo and L.S. Liu, Multiple positive solutions for a system of impulsive integral boundary value problems with sign-changing nonlinearities, Appl. Math. Lett., 82 (2018), 24-31. · Zbl 1392.34019
[28] Y.Z. Bai and X.Q. Mu, Global asymptotic stability of a generalized SIRS epidemic model with transfer from infectious to susceptible, J. Appl. Anal. Comput., 8 (2018), 402-412. · Zbl 1459.34115
[29] M.M. Li and J.R. Wang, Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations, Appl. Math. Comput., 324 (2018), 254-265. · Zbl 1426.34110
[30] X.K. Cao and J.R. Wang, Finite-time stability of a class of oscillating systems with two delays,Math. Meth. Appl. Sci., 41 (2018), 4943-4954. · Zbl 1397.34124
[31] X.X. Zheng, Y.D. Shang and X.M. Peng, Orbital stability of periodic traveling wave solutions to the generalized Zakharov equations, Acta Mathe. Scientia, 37B (2017), 998-1018. · Zbl 1399.35054
[32] X.H. Tang and S.T. Chen, Ground state solutions of Nehari-Pohožaev type for Kirchhoff-type problems with general potentials, Calc. Var. Partial Diff. Equat., 56 (2017), 1-25. · Zbl 1376.35056
[33] S.T. Chen and X.H. Tang, Improved results for Klein-Gordon-Maxwell systems with general nonlinearity, Discrete Contin. Dyn. Syst. A, 38 (2018), 2333-2348. · Zbl 1398.35026
[34] S.T. Chen and X.H. Tang, Geometrically distinct solutions for Klein-Gordon-Maxwell systems with super-linear nonlinearities, Appl. Math. Lett., 90 (2019), 188-193. · Zbl 1411.35105
[35] S.T. Chen and X.H. Tang, Ground state solutions of Schrödinger-Poisson systems with variable potential and convolution nonlinearity, J. Math. Anal. Appl., 473 (2019), 87-111. · Zbl 1412.35114
[36] L. Duan, L.H. Huang, Pseudo almost periodic dynamics of delay Nicholson’s blowflies model with a linear harvesting term, Math. Meth. Appl. Sci., 38 (2015), 1178-1189. · Zbl 1309.34073
[37] J.O. Alzabut, Almost periodic solutions for an impulsive delay Nicholson’s blowflies model, J. Comput. Appl. Math., 234 (2010), 233-239. · Zbl 1196.34095
[38] W. Wang, L. Wang and W. Chen, Existence and exponential stability of positive almost periodic solution for Nicholson-type delay systems, Nonlinear Anal.: Real World Appl., 12 (2011), 1938-1949. · Zbl 1232.34111
[39] W. Chen and B. Liu, Positive almost periodic solution for a class of Nicholson’s blowflies model with multiple time-varying delays, J. Comput. Appl. Math., 235 (2011), 2090-2097. · Zbl 1207.92042
[40] Z. Huang, S. Mohamad, X. Wang, et al., Convergence analysis of general neural networks under almost periodic stimli, Int. J. Circ. Theor. Appl., 37 (2009), 723-750.
[41] F.X. Lin, Exponential Dichotomies of Linear System, Anhui University Press, Hefei, 1999.
[42] W.A. Coppel, Dichotomies in Stability Theory(Lecture Notes in Mathematics), 1978th edition, Springer, Berlin, 1978. · Zbl 0376.34001
[43] H.S. Ding and T.J. Xiao, Existence of positive almost automorphic solutions to nonlinear delay integral equations, Nonlinear Anal.: Theory, Meth. Appl., 70 (2009), 2216-2231. · Zbl 1161.45004
[44] F. Chérif, Pseudo almost periodic solution of Nicholson’s blowflies model with mixed delays, Appl. Math. Modelling, 39 (2015), 5152-5163. · Zbl 1443.92010
[45] Z.J. Yao, Uniqueness and global exponential stability of almost periodic solution for Hematopoiesis model on time scales, J. Nonlinear Sci. Appl., 8 (2016), 142-152. · Zbl 1319.34145
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.