×

Analytical solution of one-dimensional nonlinear conformable fractional telegraph equation by reduced differential transform method. (English) Zbl 1497.65202

Summary: In this paper, the reduced differential transform method (RDTM) is successfully implemented to obtain the analytical solution of the space-time conformable fractional telegraph equation subject to the appropriate initial conditions. The fractional-order derivative will be in the conformable (CFD) sense. Some properties which help us to solve the governing problem using the suggested approach are proven. The proposed method yields an approximate solution in the form of an infinite series that converges to a closed-form solution, which is in many cases the exact solution. This method has the advantage of producing an analytical solution by only using the appropriate initial conditions without requiring any discretization, transformation, or restrictive assumptions. Four test modeling problems from mathematical physics, conformable fractional telegraph equations in which we already knew their exact solution using other numerical methods, were taken to show the liability, accuracy, convergence, and efficiency of the proposed method, and the solution behavior of each illustrative example is presented using tabulated numerical values and two- and three-dimensional graphs. The results show that the RDTM gave solutions that coincide with the exact solutions and the numerical solutions that are available in the literature. Also, the obtained results reveal that the introduced method is easily applicable and it saves a lot of computational work in solving conformable fractional telegraph equations, and it may also find wide application in other complicated fractional partial differential equations that originate in the areas of engineering and science.

MSC:

65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35C05 Solutions to PDEs in closed form
26A33 Fractional derivatives and integrals
35R11 Fractional partial differential equations

References:

[1] Podlubny, I., Fractional Differential Equations: an Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications (1998), Elsevier · Zbl 0922.45001
[2] Podlubny, I., Fractional Differential Equations (1999), San Diego, CA, USA: Academic Press, San Diego, CA, USA · Zbl 0918.34010
[3] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives, Theory and Applications (1993), Yverdon, Switzerland: Gordon and Breach, Yverdon, Switzerland · Zbl 0818.26003
[4] Alquran, M.; Jaradat, I.; Abdel-Muhsen, R., Embedding (3 + 1)-dimensional diffusion, telegraph, and Burgers’ equations into fractal 2D and 3D spaces: an analytical study, Journal of King Saud University - Science, 32, 1, 349-355 (2020) · doi:10.1016/j.jksus.2018.05.024
[5] Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Alvarado-Méndez, E.; Guerrero-Ramírez, G. V.; Escobar-Jiménez, R. F., Fractional dynamics of charged particles in magnetic fields, International Journal of Modern Physics C, 27, 8, article 1650084 (2016) · doi:10.1142/s0129183116500844
[6] Deresse, A. T., Analytical solutions to two-dimensional nonlinear telegraph equations using the conformable triple Laplace transform iterative method, Advances in Mathematical Physics, 2022 (2022) · Zbl 1497.65201 · doi:10.1155/2022/4552179
[7] Qureshi, S., Effects of vaccination on measles dynamics under fractional conformable derivative with Liouville-Caputo operator, The European Physical Journal Plus, 135, 1 (2020) · doi:10.1140/epjp/s13360-020-00133-0
[8] Morales-Delgado, V. F.; Gómez-Aguilar, J. F.; Taneco-Hernandez, M. A., Analytical solutions of electrical circuits described by fractional conformable derivatives in Liouville-Caputo sense, International Journal of Electronics and Communications, 85, 108-117 (2018) · doi:10.1016/j.aeue.2017.12.031
[9] Soltan, A.; Soliman, A. M.; Radwan, A. G., Fractional-order impedance transformation based on three port mutators, International Journal of Electronics and Communications, 81, 12-22 (2017) · doi:10.1016/j.aeue.2017.06.012
[10] Yokus, A., Construction of different types of traveling wave solutions of the relativistic wave equation associated with the Schrödinger equation, Mathematical Modelling and Numerical Simulation with Applications, 1, 1, 24-31 (2021) · doi:10.53391/mmnsa.2021.01.003
[11] Al-Mdallal, Q. M.; Yusuf, H.; Ali, A., A novel algorithm for time-fractional foam drainage equation, Alexandria Engineering Journal, 59, 3, 1607-1612 (2020) · doi:10.1016/j.aej.2020.04.007
[12] Mussa, Y. O.; Gizaw, A. K.; Negassa, A. D., Three-dimensional fourth-order time-fractional parabolic partial differential equations and their analytical solution, Mathematical Problems in Engineering, 2021 (2021) · Zbl 1512.35364 · doi:10.1155/2021/5108202
[13] Hammouch, Z.; Yavuz, M.; Özdemir, N., Numerical solutions and synchronization of a variable-order fractional chaotic system, Mathematical Modelling and Numerical Simulation with Applications, 1, 1, 11-23 (2021) · doi:10.53391/mmnsa.2021.01.002
[14] Singh, J., Analysis of fractional blood alcohol model with composite fractional derivative, Chaos Solitons Fractals, 140, article 110127 (2021) · doi:10.1016/j.chaos.2020.110127
[15] Singh, J.; Kumar, D.; Purohit, S. D.; Mani, A.; Bohra, M. M., An efficient numerical approach for fractional multidimensional diffusion equations with exponential memory, Numerical Methods for Partial Differential Equations, 37, 2, 1631-1651 (2021) · Zbl 07776036 · doi:10.1002/num.22601
[16] Singh, J., A new analysis for fractional rumor spreading dynamical model in a social network with Mittag-Leffler law, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29, 1, article 013137 (2019) · Zbl 1406.91326 · doi:10.1063/1.5080691
[17] Oliveira, E. C. D.; Machado, J. A. T., A review of definitions for fractional derivatives and integral, Mathematical Problems in Engineering, 2014 (2014) · Zbl 1407.26013 · doi:10.1155/2014/238459
[18] Tayyan, B. A.; Sakka, A. H., Lie symmetry analysis of some conformable fractional partial differential equations, Arabian Journal of Mathematics, 9, 1, 201-212 (2020) · Zbl 1436.35324 · doi:10.1007/s40065-018-0230-8
[19] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations, vol. 204 (2006), Elsevier · Zbl 1092.45003
[20] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993), New York: John Wiley & Sons, New York · Zbl 0789.26002
[21] Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M., A new definition of fractional derivative, Journal of Computational and Applied Mathematics, 264, 65-70 (2014) · Zbl 1297.26013 · doi:10.1016/j.cam.2014.01.002
[22] Tarasov, V. E., No violation of the Leibniz rule. No fractional derivative, Communications in Nonlinear Science and Numerical Simulation, 18, 11, 2945-2948 (2013) · Zbl 1329.26015 · doi:10.1016/j.cnsns.2013.04.001
[23] Abdeljawad, T., On conformable fractional calculus, Journal of Computational and Applied Mathematics, 279, 57-66 (2015) · Zbl 1304.26004 · doi:10.1016/j.cam.2014.10.016
[24] Abul-Ez, M.; Zayed, M.; Youssef, A.; De la Sen, M., On conformable fractional Legendre polynomials and their convergence properties with applications, Alexandria Engineering Journal, 59, 6, 5231-5245 (2020) · doi:10.1016/j.aej.2020.09.052
[25] Yavuz, M.; Yaşkıran, B., Approximate-analytical solutions of cable equation using conformable fractional operator, New Trends in Mathematical Science, 4, 5, 209-219 (2017) · doi:10.20852/ntmsci.2017.232
[26] Yavuz, M., Novel solution methods for initial boundary value problems of fractional order with conformable differentiation, In International Journal of Optimization and Control: Theories & Applications (IJOCTA), 8, 1, 1-7 (2017) · doi:10.11121/ijocta.01.2018.00540
[27] Ibrahim, R. W.; Altulea, D.; Elobaid, R. M., Dynamical system of the growth of COVID-19 with controller, Advances in Difference Equations, 2021, 1 (2021) · Zbl 1485.92133 · doi:10.1186/s13662-020-03168-w
[28] Abul-Ez, M.; Zayed, M.; Youssef, A., Further study on the conformable fractional gauss hypergeometric function, AIMS Mathematics, 6, 9, 10130-10163 (2021) · Zbl 1525.34008 · doi:10.3934/math.2021588
[29] Abul-E, M.; Zayed, M.; Youssef, A., Further developments of Bessel functions via conformable calculus with applications, Journal of Function Spaces, 2021 (2021) · Zbl 1489.33003 · doi:10.1155/2021/6069201
[30] Ghanbari, B.; Kumar, D.; Singh, J., An efficient numerical method for fractional model of allelopathic stimulatory phytoplankton species with Mittag-Leffler law, Discrete & Continuous Dynamical Systems - S, 14, 10, 3577-3587 (2021) · Zbl 07396816 · doi:10.3934/dcdss.2020428
[31] Atangana, A.; Baleanu, D., New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Thermal Science, 20, 2, 763-769 (2016) · doi:10.2298/TSCI160111018A
[32] Kajouni, A.; Chafiki, A.; Hilal, K.; Oukessou, M., A new conformable fractional derivative and applications, International Journal of Differential Equations, 2021 (2021) · Zbl 1497.26005 · doi:10.1155/2021/6245435
[33] Arqub, O. A.; Singh, J.; Maayah, B.; Alhodaly, M., Reproducing kernel approach for numerical solutions of fuzzy fractional initial value problems under the Mittag-Leffler kernel differential operator, Mathematical Methods in the Applied Sciences, 1, 1-22 (2021) · Zbl 1529.34003 · doi:10.1002/mma.7305
[34] Gao, F.; Chi, C., Improvement on conformable fractional derivative and its applications in fractional differential equations, Journal of Function Spaces, 2020 (2020) · Zbl 1453.34008 · doi:10.1155/2020/5852414
[35] Deresse, A. T.; Mussa, Y. O.; Gizaw, A. K., Analytical solution of two-dimensional sine-Gordon equation, Advances in Mathematical Physics, 2021 (2021) · Zbl 1481.35264 · doi:10.1155/2021/6610021
[36] Gupta, P. K., Approximate analytical solutions of fractional Benney-Lin equation by reduced differential transform method and the homotopy perturbation method, Computers & Mathematcs with Applications, 61, 9, 2829-2842 (2011) · Zbl 1221.65276 · doi:10.1016/j.camwa.2011.03.057
[37] Acan, O.; Baleanu, D., A new numerical technique for solving fractional partial differential equations, Miskolc Mathematical Notes, 19, 1, 3-18 (2018) · Zbl 1474.65405 · doi:10.18514/MMN.2018.2291
[38] Noori, S. R. M.; Taghizadeh, N., Study of convergence of reduced differential transform method for different classes of differential equations, International Journal of Differential Equations, 2021 (2021) · Zbl 1481.35117 · doi:10.1155/2021/6696414
[39] Yavuz, M.; Yaşkıran, B., Conformable derivative operator in modelling neuronal dynamics, Applications and Applied Mathematics: An International Journal (AAM), 13, 2, 13, 803-817 (2018) · Zbl 1406.35481
[40] Omorodion, S. S., Conformable fractional reduced differential transform method for solving linear and nonlinear time-fractional Swift-Hohenberg (S-H) equation, International Journal of Scientific Research in Mathematical and Statistical Sciences, 8, 6, 20-29 (2021)
[41] Thabet, H.; Kendre, S., Analytical solutions for conformable space-time fractional partial differential equations via fractional differential transform, Chaos, Solitons and Fractals, 109, 238-245 (2018) · Zbl 1390.35406 · doi:10.1016/j.chaos.2018.03.001
[42] Zulfiqar, A.; Ahmad, J., Comparative study of two techniques on some nonlinear problems based using conformable derivative, Nonlinear Engineering, 9, 1, 470-482 (2020) · doi:10.1515/nleng-2020-0030
[43] Eslami, M.; Taleghani, S. A., Differential transform method for conformable fractional partial differential equations, Iranian Journal of Numerical Analysis and Optimization, 9, 2, 17-29 (2019) · Zbl 1513.35521
[44] Okubo, A., Application of the Telegraph Equation to Oceanic Diffusion, Another Mathematic Model (1971), Baltimore, MD, USA: Chesapeake Bay Institute, the Johns Hopking Unversity, Baltimore, MD, USA
[45] Khan, H.; Tunç, C.; Khan, R. A.; Shirzoi, A. G.; Khan, A., Approximate analytical solutions of space-fractional telegraph equations by Sumudu Adomian decomposition method, Applications and Applied Mathematics, 13, 2, 781-802 (2018) · Zbl 1407.35213
[46] Khan, H.; Shah, R.; Kumam, P.; Baleanu, D.; Arif, M., An efficient analytical technique, for the solution of fractional-order telegraph equations, Mathematics, 7, 5, 426 (2019) · doi:10.3390/math7050426
[47] Asgari, M.; Ezzati, R.; Allahviranloo, T., Numerical solution of time-fractional order telegraph equation by Bernstein polynomials operational matrices, Mathematical Problems in Engineering, 2016 (2016) · Zbl 1400.65052 · doi:10.1155/2016/1683849
[48] Delić, A.; Jovanović, B. S.; Živanović, S., Finite difference approximation of a generalized time-fractional telegraph equation, Computational Methods in Applied Mathematics, 20, 4, 595-607 (2020) · Zbl 1456.65061 · doi:10.1515/cmam-2018-0291
[49] Hamza, A. E.; Mohamed, M. Z.; Abd Elmohmoud, E. M.; Magzoub, M., Conformable Sumudu transform of space-time fractional telegraph equation, Abstract and Applied Analysis, 2021 (2021) · Zbl 1482.35248 · doi:10.1155/2021/6682994
[50] Osman, W. M.; Elzaki, T. M.; Siddig, N. A. A., Solution of fractional telegraph equations by conformable double convolution Laplace transform, Communications in Mathematics and Applications, 12, 1, 51-58 (2021) · doi:10.26713/cma.v12i1.1362
[51] Bouaouid, M.; Hilal, K.; Melliani, S., Nonlocal telegraph equation in frame of the conformable time-fractional derivative, Advances in Mathematical Physics, 2019 (2019) · Zbl 1429.35197 · doi:10.1155/2019/7528937
[52] Saad, A.; Brahim, N., Analytical solution for the conformable fractional telegraph equation by Fourier method, Proceedings of International Mathematical Sciences, 2, 1, 1-6 (2020)
[53] Kumar, D.; Singh, J.; Baleanu, D., On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law, Mathematicsl Methods in the Applied Sciences, 43, 1, 443-457 (2020) · Zbl 1442.35515 · doi:10.1002/mma.5903
[54] Hashemi, M. S., Invariant subspaces admitted by fractional differential equations with conformable derivatives, Chaos, Solitons and Fractals, 107, 161-169 (2018) · Zbl 1381.34014 · doi:10.1016/j.chaos.2018.01.002
[55] Birgania, O. T.; Chandok, S.; Dedovic, N.; Radenovic, S., A note on some recent results of the conformable derivative, Advances in the Theory of Nonlinear Analysis and its Application, 3, 1, 11-17 (2018) · Zbl 1438.26008
[56] Alfaqeih, S.; Mısırlı, E., On convergence analysis and analytical solutions of the conformable fractional Fitzhugh-Nagumo model using the conformable Sumudu decomposition method, Symmetry, 13, 243 (2021) · doi:10.3390/sym13020243
[57] Zahra, W. K.; Nasr, M. A.; Baleanu, D., Time-fractional nonlinear Swift-Hohenberg equation: analysis and numerical simulation, Alexandria Engineering Journal, 59, 6, 4491-4510 (2020) · doi:10.1016/j.aej.2020.08.002
[58] Ünal, E.; Gökdoğan, A., Solution of conformable fractional ordinary differential equations via differential transform method, Optik, 128, 264-273 (2017) · doi:10.1016/j.ijleo.2016.10.031
[59] Srivastava, V. K.; Awasthi, M. K.; Tamsir, M., RDTM solution of Caputo time fractional-order hyperbolic telegraph equation, AIP Advances, 3, 3, article 032142 (2013) · doi:10.1063/1.4799548
[60] Dhunde, R. R.; Waghmare, G. L., Double Laplace transform combined with iterative method for solving nonlinear telegraph equation, Journal of the Indian Mathematical Society, 83, 3-4, 221-230 (2016) · Zbl 1474.35481
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.