×

Weighted tensor Golub-Kahan-Tikhonov-type methods applied to image processing using a t-product. (English) Zbl 1497.65071

Summary: This paper discusses weighted tensor Golub-Kahan-type bidiagonalization processes using the t-product. This product was introduced in [M. E. Kilmer and C. D. Martin, Linear Algebra Appl. 435, No. 3, 641–658 (2011; Zbl 1228.15009)]. A few steps of a bidiagonalization process with a weighted least squares norm are carried out to reduce a large-scale linear discrete ill-posed problem to a problem of small size. The weights are determined by symmetric positive definite (SPD) tensors. Tikhonov regularization is applied to the reduced problem. An algorithm for tensor Cholesky factorization of SPD tensors is presented. The data is a laterally oriented matrix or a general third order tensor. The use of a weighted Frobenius norm in the fidelity term of Tikhonov minimization problems is appropriate when the noise in the data has a known covariance matrix that is not the identity. We use the discrepancy principle to determine both the regularization parameter in Tikhonov regularization and the number of bidiagonalization steps. Applications to image and video restoration are considered.

MSC:

65F22 Ill-posedness and regularization problems in numerical linear algebra
15A69 Multilinear algebra, tensor calculus
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry

Citations:

Zbl 1228.15009

References:

[1] Kilmer, M. E.; Martin, C. D., Factorization strategies for third-order tensors, Linear Algebra Appl., 434, 641-658 (2011) · Zbl 1228.15009
[2] Reichel, L.; Ugwu, U. O., Tensor Golub-Kahan-Tikhonov methods applied to the solution of ill-posed problem with a t-product structure, Numer. Linear Algebra Appl., 29, Article e2412 pp. (2022) · Zbl 07511593
[3] Kilmer, M. E.; Braman, K.; Hao, N.; Hoover, R. C., Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging, SIAM J. Matrix Anal. Appl., 34, 148-172 (2013) · Zbl 1269.65044
[4] Reichel, L.; Ugwu, U. O., Tensor Krylov subspace methods with an invertible linear transform product applied to image processing, Appl. Numer. Math., 166, 186-207 (2021) · Zbl 1465.65035
[5] Reichel, L.; Ugwu, U. O., Tensor Arnoldi-Tikhonov and GMRES-type methods for ill-posed problem with t-product structure, J. Sci. Comput., 90, Article 59 pp. (2022) · Zbl 1481.65060
[6] El Guide, M.; El Ichi, A.; Jbilou, K.; Sadaka, R., Tensor Krylov subspace methods via the T-product for color image processing (2020), https://arxiv.org/pdf/2006.07133.pdf
[7] Beik, F. P.A.; El Ichi, A.; Jbilou, K.; Sadaka, R., Tensor extrapolation methods with applications, Numer. Algorithms, 87, 1421-1444 (2021) · Zbl 1472.65049
[8] Beik, F. P.A.; Jbilou, K.; Najafi-Kalyani, M.; Reichel, L., Golub-Kahan bidiagonalization for ill-conditioned tensor equations with applications, Numer. Algorithms, 84, 1535-1563 (2020) · Zbl 1483.65069
[9] Beik, F. P.A.; Najafi-Kalyani, M.; Reichel, L., Iterative Tikhonov regularization of tensor equations based on the Arnoldi process and some of its generalizations, Appl. Numer. Math., 151, 425-447 (2020) · Zbl 1432.65049
[10] M. El Guide, A. El Ichi, K. Jbilou, F.P.A. Beik, Tensor GMRES and Golub-Kahan bidiagonalization methods via the Einstein product with applications to image and video processing, https://arxiv.org/pdf/2005.07458.pdf. · Zbl 1538.65066
[11] El Ichi, A.; El Guide, M.; Jbilou, K., Discrete cosine transform LSQR and GMRES methods for multidimensional ill-posed problems (2021), https://arxiv.org/pdf/2103.11847.pdf
[12] Engl, H. W.; Hanke, M.; Neubauer, A., Regularization of inverse problems (1996), Kluwer, Dordrecht · Zbl 0859.65054
[13] Fenu, C.; Reichel, L.; Rodriguez, G., GCV for Tikhonov regularization via global Golub-Kahan decomposition, Numer. Linear Algebra Appl., 23, 467-484 (2016) · Zbl 1374.65064
[14] Hansen, P. C., Rank-Deficient and Discrete Ill-Posed Problems (1998), SIAM: SIAM Philadelphia
[15] Kindermann, S., Convergence analysis of minimization-based noise level-free parameter choice rules for linear ill-posed problems, Electron. Trans. Numer. Anal., 38, 233-257 (2011) · Zbl 1287.65043
[16] Kindermann, S.; Raik, K., A simplified L-curve method as error estimator, Electron. Trans. Numer. Anal., 53, 217-238 (2020) · Zbl 1475.65024
[17] Reichel, L.; Rodriguez, G., Old and new parameter choice rules for discrete ill-posed problems, Numer. Algorithms, 63, 65-87 (2013) · Zbl 1267.65045
[18] Chung, J.; Saibaba, A., Generalized hybrid iterative methods for large-scale Bayesian inverse problems, SIAM J. Sci. Comput., 39, S24-S46 (2007) · Zbl 1422.65065
[19] Chung, J.; Saibaba, A.; Brown, M.; Westman, E., Efficient generalized Golub-Kahan based methods for dynamic inverse problems, Inverse Problems, 34, Article 024005 pp. (2018) · Zbl 1385.65034
[20] Saibaba, A. K.; Chung, J.; Petroske, K., Efficient Krylov subspace methods for uncertainty quantification in large Bayesian linear inverse problems, Numer. Linear Algebra Appl., 27, Article e2325 pp. (2020) · Zbl 1538.65087
[21] Arridge, S. R.; Betcke, M. M.; Harhanen, L., Iterated preconditioned LSQR method for inverse problems on unstructured grids, Inverse Problems, 30, Article 075009 pp. (2014) · Zbl 1321.65094
[22] Kolda, T. G.; Bader, B. W., Tensor decompositions and applications, SIAM Rev., 51, 455-500 (2009) · Zbl 1173.65029
[23] Benbow, S. J., Solving generalized least-squares problems with LSQR, SIAM J. Matrix Anal. Appl., 21, 166-177 (1999) · Zbl 0945.65041
[24] Oriel, M., Generalized Golub-Kahan bidiagonalization and stopping criteria, SIAM J. Matrix Anal. Appl., 34, 571-592 (2013) · Zbl 1273.65041
[25] M. Arioli, D. Orban, Iterative methods for symmetric quasi-definite linear systems - Part I: Theory, in: Cahier Du GERAD G-2013-32, Montréal, Canada: GERAD, Montréal, QC, 2013. · Zbl 1409.65004
[26] Orban, D.; Arioli, M., Iterative Solution of Symmetric Quasi-Definite Linear Systems (2017), SIAM: SIAM Philadelphia · Zbl 1409.65004
[27] Björck, Å., Numerical Methods in Matrix Computations (2015), Springer: Springer Cham · Zbl 1322.65047
[28] Hansen, P. C., Regularization tools, version 4.0, for MATLAB 7.3, Numer. Algorithms, 46, 189-194 (2007) · Zbl 1128.65029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.