×

A Halpern-type iteration for solving the split feasibility problem and the fixed point problem of Bregman relatively nonexpansive semigroup in Banach spaces. (English) Zbl 1497.47092

Summary: We study the split feasibility problem (SFP) involving the fixed point problems (FPP) in the framework of \(p\)-uniformly convex and uniformly smooth Banach spaces. We propose a Halpern-type iterative scheme for solving the solution of SFP and FPP of Bregman relatively nonexpansive semigroup. Then we prove its strong convergence theorem of the sequences generated by our iterative scheme under implemented conditions. We finally provide some numerical examples and demonstrate the efficiency of the proposed algorithm. The obtained result of this paper complements many recent results in this direction.

MSC:

47J25 Iterative procedures involving nonlinear operators
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
Full Text: DOI

References:

[1] R. P. Agarwal, D. O’Regan and D. R. Sahu, Fixed Point Theory for Lipschitzian-type Mappings with Applications, Springer, 2009. · Zbl 1176.47037
[2] Y. I. Alber, Generalized projection operators in Banach spaces: properties and applications. In: Functional Differential Equations. Proceedings of the Israel Seminar Ariel, Israel, vol. 1, pp. 1-21, 1993. · Zbl 0882.47046
[3] Y. I. Alber, Metric and generalized projection operators in Banach spaces: properties and applications, Lect. Notes Pure Appl. Math. pp. 15-50, 1996. · Zbl 0883.47083
[4] A. Aleyner, Y. Censor, Best approximation to common fixed points of a semigroup of nonexpansive operator, Nonlinear Convex Anal. 6 (2005) 137-151. · Zbl 1071.41031
[5] A. Aleyner and S. Reich, An explicit construction of sunny nonexpansive retractions in Banach spaces, Fixed Point Theory Appl. vol. 2005, no. 3 (2005) 295-305. · Zbl 1096.47055
[6] K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, Approximation of common fixed points of a countable family of nonex-pansive mappings in a Banach space, Nonlinear Anal. 67 (2007) 2350-2360. · Zbl 1130.47045
[7] J. Banasiak and L. Arlotti, Perturbations of Positive Semigroups with Applications, Springer-Verlag, London, 2006. · Zbl 1097.47038
[8] T. D. Benavides, G. L. Acedo and H. K. Xu, Construction of sunny nonexpansive retractions in Banach spaces, Bull. Austral. Math. Soc. 66 (2002) 9-16. · Zbl 1017.47037
[9] L. M. Bregman, The relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Comput. Math. Math. Phys. 7 (1967) 200-217. · Zbl 0186.23807
[10] C. Byrne, Iterative oblique projection onto convex subsets and the split feasibility problem, Inverse Probl. 18 (2002) 441-453. · Zbl 0996.65048
[11] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algor. 8 (1994) 221-239. · Zbl 0828.65065
[12] Y. Censor, T. Elfving, N. Kopf and T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Probl. 21 (2005) 2071-2084. · Zbl 1089.65046
[13] Y. Censor, T. Bortfeld, B. Martin and A. Trofimov, A unified approach for inversion problems in intensity modulated radiation therapy, Phys. Med. Biol. 51 (2006) 2353-2365.
[14] Y. Censor, A. Motova and A. Segal, Perturbed projections and subgradient projections for the multiple-sets split feasibility problem, J. Math. Anal. Appl. 327 (2007) 1244-1256. · Zbl 1253.90211
[15] C. Chidume, Geometric Properties of Banach Spaces and Nonlinear Iterations, Springer-Verlag, London, 2009. · Zbl 1167.47002
[16] Y. J. Cho, S. M. Kang and H. Zhou, Some control conditions on iterative methods, Commun. Appl. Nonlinear Anal. 12 (2005) 27-34. · Zbl 1088.47053
[17] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic, Dordrecht, 1990. · Zbl 0712.47043
[18] B. Eicke, Iteration methods for convexly constrained ill-posed problems in Hilbert space, Numer. Funct. Anal. Optim. 13 (1992) 413-429. · Zbl 0769.65026
[19] H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers Group, Dordrecht, The Netherlands, 1996. · Zbl 0859.65054
[20] L. W. Kuo and D. R. Sahu, Bregman distance and strong convergence of proximal-type algorithms, Abstr. Appl. Anal. (2013), Article ID 590519, 12 pages. · Zbl 1432.47003
[21] P. E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16 (2008) 899-912. · Zbl 1156.90426
[22] V. Martin-Márquez, S. Reich and S. Sabach, Bregman strongly nonexpansive operators in reflexive Banach spaces, J. Math. Anal. Appl. 400 (2013) 597-614. · Zbl 1284.47033
[23] K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003) 372-379. · Zbl 1035.47048
[24] S. Reich, Approximating fixed points of nonexpansive mappings, Panam. Math. J. 4 (1994) 23-28. · Zbl 0856.47032
[25] S. Saejung, Strong convergence theorems for nonexpansive semigroups without Bochner integrals, Fixed Point Theory Appl. (2008), Article ID 745010, 1-7. · Zbl 1203.47077
[26] F. Schöpfer, T. Schuster and A. K. Louis, An iterative regularization method for the solution of the split feasibility problem in Banach spaces, Inverse Probl. 24 (2008) 20 pages. · Zbl 1153.46308
[27] Y. Shehu, Iterative methods for split feasibility problems in certain Banach spaces, J. Nonlinear Convex Anal. 16 (2015), 2315-2364 · Zbl 1334.49037
[28] Y. Shehu, O. S. Iyiola and C. D. Enyi, An iterative algorithm for solving split feasibility problems and fixed point problems in Banach spaces, Numer. Algor. 72 (2016) 835-864. · Zbl 1346.49051
[29] Y. Shehu, F. U. Ogbuisi and O. S. Iyiola, Convergence analysis of an iterative algorithm for fixed point problems and split feasibility problems in certain Banach spaces, Optimization 65 (2016) 299-323. · Zbl 1347.49014
[30] S. Suantai, Y. J. Cho and P. Cholamjiak, Halperns iteration for Bregman strongly nonexpansive mappings in reflexive Banach spaces, Comput. Math. Appl. 64 (2012) 489-499. · Zbl 1252.65100
[31] F. Wang, A new algorithm for solving the multiple-sets split feasibility problem in Banach spaces, Numer. Funct. Anal. Optim. 35 (2014) 99-110. · Zbl 1480.47102
[32] Z. B. Xu, G. F. Roach, Characteristic inequalities of uniformly convex and uniformly smooth Banach spaces, J. Math. Anal. Appl. 157 (1991) 189-210. · Zbl 0757.46034
[33] H. K. Xu, Another control condition in an iterative method for nonexpansive mappings. Bull. Austal. Math. Soc. 65 (2002) 109-113. · Zbl 1030.47036
[34] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991) 1127-1138. · Zbl 0757.46033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.