×

Dynamics of transformed nonlinear waves in the (3+1)-dimensional B-type Kadomtsev-Petviashvili equation. I: Transitions mechanisms. (English) Zbl 1497.35396

Summary: We explore the dynamical properties of transformed nonlinear waves (TNWs) for the (3+1)-dimensional B-type Kadomtsev-Petviashvili (BKP) equation describing the propagation of waves in fluids. The breath-wave solution is first given by the Hirota bilinear method. Different from the (1+1)- or (2+1)-dimensional case, three types of conversion conditions are analytically derived in different spatial coordinates, by which the breath waves can be converted into diverse TNWs, including the M-shaped kink soliton, kink soliton with multi peaks, (quasi-) kink soliton, and (quasi-) periodic wave. In addition, an attractive dynamic mechanism of high-dimensional nonlinear waves is investigated, where the shape-changed evolution of these waves can be observed. Then the gradient relationship of the TNWs is illustrated in terms of the wave number ratio of superposition components. The formation mechanism of TNWs is further analyzed based on the analysis of nonlinear superposition and phase shift. Different from previous result, the wave component for the (3+1)-dimensional BKP shows the kink-shaped profile, instead of the bell-shaped one. The principle of the nonlinear superposition is further used to explicate the essence of oscillation, locality and shape-changed evolution of the TNWs. The lump wave is finally transformed into the line rogue wave (LRW) showing the short-lived property. This indicates that the LRWs could be incorporated into the framework of TNWs in some high-dimensional systems.

MSC:

35Q35 PDEs in connection with fluid mechanics
35Q53 KdV equations (Korteweg-de Vries equations)
35C08 Soliton solutions
76B25 Solitary waves for incompressible inviscid fluids
37K35 Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
Full Text: DOI

References:

[1] Kadomtsev, B. B.; Petviashvili, V. I., On the stability of solitary waves in weakly dispersing media, Sov. Phys. Dokl., 15, 539 (1970) · Zbl 0217.25004
[2] Petviashvili, V. I., Equation of an extraordinary soliton, Plasma Phys., 2, 469 (1976)
[3] Manakov, S. V.; Zakharov, V. E.; Bordag, L. A.; Its, A. R.; Matveev, V. B., Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction, Phys. Lett. A, 63, 205 (1977)
[4] Pelinovsky, D., Rational solutions of the Kadomtsev-Petviashvili hierarchy and the dynamics of their poles. I. New form of a general rational solution, J Math Phys, 35, 5820 (1994) · Zbl 0817.35097
[5] Ablowitz, M. J.; Chakravarty, S.; Trubatch, A. D.; Villarroel, J., A novel class of solutions of the non-stationary Schrodinger and the Kadomtsev-Petviashvili I equations, Phys. Lett. A, 267, 132 (2000) · Zbl 0947.35129
[6] Chang, J. H., Asymptotic analysis of multilump solutions of the Kadomtsev-Petviashvili-I equation, Theor. Math. Phys., 195, 676 (2018) · Zbl 1401.37074
[7] Dubard, P.; Matveev, V. B., Multi-rogue waves solutions to the focusing NLS equation and the KP-I equation, Nat. Hazards Earth Syst. Sci., 11, 667 (2011)
[8] Dubard, P.; Matveev, V. B., Multi-rogue waves solutions: from the NLS to the KP-I equation, Nonlinearity, 26, R93 (2013) · Zbl 1286.35226
[9] Lester, C.; Gelash, A.; Zakharov, D.; Zakharov, V., Lump chains in the KP-I equation (2021), arXiv:2102.07038
[10] Biondini, G., Line soliton interactions of the Kadomtsev-Petviashvili equation, Phys Rev Lett, 99, Article 064103 pp. (2007)
[11] Chakravarty, S.; Kodama, Y., Classification of the line-soliton solutions of KPII, J Phys A, 41, Article 275209 pp. (2008) · Zbl 1147.35082
[12] Ablowitz, M. J.; Segur, H., Solitons and the inverse scattering transform (1981), SIAM: SIAM Philadelphia · Zbl 0472.35002
[13] Infeld, E.; Rowlands, G., Nonlinear waves, solitons and chaos (2001), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0726.76018
[14] Ablowitz, M. J.; Segur, H., On the evolution of packets of water waves, J Fluid Mech, 92, 691 (1979) · Zbl 0413.76009
[15] Pelinovsky, D. E.; Stepanyants, Y. A.; Kivshar, Y. S., Self-focusing of plane dark solitons in nonlinear defocusing media, Phys Rev E, 51, 5016 (1995)
[16] Leblond, H.; Kremer, D.; Mihalache, D., Ultrashort spatiotemporal optical solitons in quadratic nonlinear media: Generation of line and lump solitons from few-cycle input pulses, Phys. Rev. A, 80, Article 053812 pp. (2009)
[17] Leblond, H.; Kremer, D.; Mihalache, D., Collapse of ultrashort spatiotemporal pulses described by the cubic generalized Kadomtsev-Petviashvili equation, Phys. Rev. A, 81, Article 033824 pp. (2010)
[18] Lin, M. M.; Duan, W. S., The Kadomtsev-Petviashvili (KP), MKP, and coupled KP equations for two-ion-temperature dusty plasmas, Chaos Solitons Fractals, 23, 929 (2005) · Zbl 1069.35073
[19] Seadawy, A. R.; EL-Rashidy, Dispersive solitary wave solutions of Kadomtsev-Petviashvili and modified Kadomtsev-Petviashvili dynamical equations in unmagnetized dust plasma, Results Phys, 8, 1216 (2018)
[20] Seadawy, A. R., Solitary wave solutions of two-dimensional nonlinear Kadomtsev-Petviashvili dynamic equation in dust-acoustic plasmas, Pramana-J. Phys., 89, 49 (2017)
[21] Mihalache, D., Multidimensional localized structures in optics and Bose-Einstein condensates: A selection of recent studies, Rom. J. Phys., 59, 295 (2014)
[22] Bagnato, V. S.; Frantzeskakis, D. J.; Kevrekidis, P. G.; Malomed, B. A.; Mihalache, D., Bose-Einstein condensation: Twenty years after, Rom. Rep. Phys., 67, 5 (2015)
[23] Tsuchiya, S.; Dalfovo, F.; Pitaevskii, L., Solitons in two-dimensional Bose-Einstein condensates, Phys. Rev. A, 77, Article 045601 pp. (2008)
[24] Stepanyants Y, Zakharov D, Zakharov V. Lump interactions with plane solitons. arXiv:2108.06071.
[25] Dong JY, Ling LM, Zhang XE. Kadomtsev-Petviashvili equation: one-constraint method and lump pattern, arXiv:2108.09715v1.
[26] Lester C, Gelash A, Zakharov D, Zakharov V. Lump chains in the KP-I equation, arXiv:2102.07038.
[27] Rao, J. G.; Chow, K. W.; Mihalache, D.; He, J. S., Completely resonant collision of lumps and line solitons in the Kadomtsev-Petviashvili I equation, Stud. Appl. Math. (2021) · Zbl 1476.35081
[28] Date, E.; Jimbo, M.; Kashiwara, M.; Miwa, T., Transformation groups for soliton equations-Euclidean lie algebras and reduction of the KP hierarchy, Publ. RIMS, 18, 1077 (1982) · Zbl 0571.35103
[29] Oevel, W.; Strampp, W., Constrained KP hierarchy and bi-Hamiltonian structures, Comm Math Phys, 157, 51 (1993) · Zbl 0793.35095
[30] Cheng, Y., Constraints of the Kadomtsev-Petviashvili hierarchy, J Math Phys, 33, 3774 (1992) · Zbl 0761.35101
[31] Kac, V. G.; van de Leur, J. W., The n-component KP hierarchy and representation theory, J Math Phys, 44, 3245 (2003) · Zbl 1062.37071
[32] Goulden, I. P.; Jackson, D. M., The KP hierarchy, branched covers, and triangulations, Adv Math, 219, 932 (2008) · Zbl 1158.37026
[33] Liu, X. J.; Zeng, Y. B.; Lin, R. L., A new extended KP hierarchy, Phys. Lett. A, 372, 3819 (2008) · Zbl 1220.37055
[34] Li, H. M., Modified constrained KP hierarchy and bi-Hamiltonian structures, Anal. Math. Phys., 11, 1 (2021) · Zbl 1472.37070
[35] Sato, M., Soliton equations as dynamical systems on a infinite dimensional grassmann manifolds, RIMS Kokyuroku, 439, 30 (1981) · Zbl 0507.58029
[36] Ohta, Y.; Satsuma, J.; Takahashi, D.; Tokihiro, T., An elementary introduction to sato theory, Progr Theoret Phys Suppl, 94, 210 (1988)
[37] Date, E.; Jimbo, M.; Kashiwara, M.; Miwa, T., Operator approach to the Kadomtsev-Petviashvili equation-transformation groups for soliton equations III, J Phys Soc Japan, 50, 3806 (1981) · Zbl 0571.35099
[38] Date, E.; Kashiwara, M.; Miwa, T., Transformation groups for soliton equations. II. vertex operators and \(\tau\) functions, Proc. Jpn. Acad. Ser. A, Math. Sci., 57, 387 (1981) · Zbl 0538.35066
[39] Date, E.; Jimbo, M.; Kashiwara, M.; Miwa, T., Transformation groups for soliton equations: IV. A new hierarchy of soliton equations of KP-type, Physica D, 4, 343 (1982) · Zbl 0571.35100
[40] Shen, H. F.; Tu, M. H., On the constrained B-type Kadomtsev-Petviashvili hierarchy: Hirota bilinear equations and virasoro symmetry, J Math Phys, 52, Article 032704 pp. (2011) · Zbl 1315.37043
[41] Li, C. Z.; He, J. S., Block algebra in two-component BKP and D type Drinfeld-Sokolov hierarchies, J Math Phys, 54, Article 113501 pp. (2013) · Zbl 1306.37078
[42] Li, C. Z.; He, J. S., Quantum torus symmetry of the KP, KdV and BKP hierarchies, Lett. Math. Phys., 104, 1407 (2014) · Zbl 1302.37040
[43] Li, C. Z., Gauge transformation and symmetries of the commutative multicomponent BKP hierarchy, J Phys A, 49, Article 015203 pp. (2015) · Zbl 1343.37065
[44] Li, C. Z.; He, J. S., Supersymmetric BKP systems and their symmetries, Nuclear Phys B, 896, 716 (2015) · Zbl 1331.37091
[45] Hirota, R., Soliton solutions to the BKP equations. I. The pfaffian technique, J Phys Soc Japan, 58, 2285 (1989)
[46] Tsujimoto, S.; Hirota, R., Pfaffian representation of solutions to the discrete BKP hierarchy in bilinear form, J Phys Soc Japan, 65, 2797 (1996) · Zbl 0948.39007
[47] Wazwaz, A. M., Two B-type Kadomtsev-Petviashvili equations of (2+1) and (3+1) dimensions: multiple soliton solutions, rational solutions and periodic solutions, Comput. Fluids, 86, 357 (2013) · Zbl 1290.35028
[48] Liang, Y. Q.; Wei, G. M.; Li, X. N., Painlevé integrability, similarity reductions, new soliton and soliton-like similarity solutions for the (2+1)-dimensional BKP equation, Nonlinear Dynam, 62, 195 (2010) · Zbl 1208.35018
[49] Hirota, R., Soliton solutions to the BKP equations. II. The integral equation, J Phys Soc Japan, 58, 2705 (1989)
[50] Nimmo, J. J.C., Hall-littlewood symmetric functions and the BKP equation, J Phys A: Math Gen, 23, 751 (1990) · Zbl 0721.35069
[51] Feng, Y.; He, J. S.; Cheng, Y., The degeneration of the breathers for the BKP equation, Chin. J. Phys. (2020)
[52] Tajiri, M.; Arai, T., Growing-and-decaying mode solution to the Davey-Stewartson equation, Phys Rev E, 60, 2297 (1999)
[53] Ohta, Y.; Yang, J. K., Rogue waves in the Davey-Stewartson I equation, Phys Rev E, 86, Article 036604 pp. (2012)
[54] Ohta, Y.; Yang, J. K., Dynamics of rogue waves in the Davey-Stewartson II equation, J. Phys. A Math. Theor., 46, Article 105202 pp. (2013) · Zbl 1311.35298
[55] Gu, J. Y.; Zhang, Y.; Dong, H. H., Dynamic behaviors of interaction solutions of (3+1)-dimensional shallow water wave equation, Comput Math Appl, 76, 1408 (2018) · Zbl 1434.35160
[56] Liu, Y. B.; Fokas, A. S.; Mihalache, D.; He, J. S., Parallel line rogue waves of the third-type Davey-Stewartson equation, Rom. Rep. Phys., 68, 1425 (2016)
[57] Rao, J. G.; Wang, L. H.; Liu, W.; He, J. G., Rogue-wave solutions of the Zakharov equation, Theoret Math Phys, 193, 1783 (2017) · Zbl 1391.76150
[58] Liu, W., Parallel line rogue waves of a (2+1)-dimensional nonlinear Schrödinger equation describing the Heisenberg ferromagnetic spin chain, Rom. J. Phys., 62, 118 (2017)
[59] Qian, C.; Rao, J. G.; Liu, Y. B.; He, J. S., Rogue waves in the three-dimensional Kadomtsev-Petviashvili equation, Chin Phys Lett, 33, Article 110201 pp. (2016)
[60] Guo, J. T.; He, J. S.; Li, M. H.; Mihalache, D., Multiple-order line rogue wave solutions of extended Kadomtsev-Petviashvili equation, Math Comput Simulation, 180, 251 (2021) · Zbl 1524.35535
[61] Yue, Y. F.; Huang, L. L.; Chen, Y., N-solitons, breathers, lumps and rogue wave solutions to a (3+1)-dimensional nonlinear evolution equation, Comput Math Appl, 75, 2538 (2018) · Zbl 1409.35188
[62] Zhang, X.; Wang, L.; Liu, C.; Li, M.; Zhao, Y. C., High-dimensional nonlinear wave transitions and their mechanisms, Chaos, 30, Article 113107 pp. (2020) · Zbl 1454.35048
[63] Ge, F. F.; Tian, S. F., Mechanisms of nonlinear wave transitions in the \(( 2 + 1 )\)-dimensional generalized breaking soliton equation, Nonlinear Dynam, 105, 1753 (2021)
[64] Wazwaz, A. M., Two forms of (3+1)-dimensional B-type Kadomtsev-Petviashvili equation: multiple soliton solutions, Phys Scr, 86, Article 035007 pp. (2012) · Zbl 1266.37034
[65] Huang, Z. R.; Tian, B.; Zhen, H. L.; Jiang, Y.; Wang, Y. P.; Sun, Y., Bäcklund transformations and soliton solutions for a (3+1)-dimensional B-type Kadomtsev-Petviashvili equation in fluid dynamics, Nonlinear Dynam, 80, 1 (2015) · Zbl 1345.37070
[66] Abudiab, M.; Khalique, C. M., Exact solutions and conservation laws of a (3+1)-dimensional B-type Kadomtsev-Petviashvili equation, Adv Differential Equations, 2013, 221 (2013) · Zbl 1379.35272
[67] Mao, J. J.; Tian, S. F.; Zou, L.; Zhang, T. T.; Yan, X. J., Bilinear formalism, lump solution, lumpoff and instanton/rogue wave solution of a (3+1)-dimensional B-type Kadomtsev-Petviashvili equation, Nonlinear Dynam, 95, 3005 (2019) · Zbl 1437.37094
[68] Peregrine, D. H., Water waves, nonlinear Schrödinger equations and their solutions, J. Aust. Math. Soc. Ser. B, Appl. Math., 25, 16 (1983) · Zbl 0526.76018
[69] Kibler, B.; Fatome, J.; Finot, C.; Millot, G.; Dias, F.; Genty, G., The peregrine soliton in nonlinear fiber optics, Nat. Phys., 6, 790 (2010)
[70] Kuznetsov, E. A., Solitons in a parametrically unstable plasma, Dokl Akad Nauk SSSR, 236, 575 (1977)
[71] Ma, Y. C., The perturbed plane-wave solutions of the cubic Schrödinger equation, Stud. Appl. Math., 60, 43 (1979) · Zbl 0412.35028
[72] Akhmediev, N.; Korneev, V. I., Modulation instability and periodic solutions of the nonlinear Schrödinger equation, Theor. Math. Phys., 69, 1089 (1986) · Zbl 0625.35015
[73] Dudley, J. M.; Genty, G.; Dias, F.; Kibler, B.; Akhmediev, N., Modulation instability, akhmediev breathers and continuous wave supercontinuum generation, Opt. Express, 17, Article 21497 pp. (2009)
[74] Zakharov, V. E.; Gelash, A. A., Nonlinear stage of modulation instability, Phys Rev Lett, 111, Article 054101 pp. (2013)
[75] Kibler, B.; Chabchoub, A.; Gelash, A.; Akhmediev, N.; Zakharov, V. E., Superregular breathers in optics and hydrodynamics: omnipresent modulation instability beyond simple periodicity, Phys. Rev. X, 5, Article 041026 pp. (2015)
[76] Liu, C.; Yang, Z. Y.; Zhao, L. C.; Yang, W. L., State transition induced by higher-order effects and background frequency, Phys Rev E, 91, Article 022904 pp. (2015)
[77] Chowdury, A.; Ankiewicz, A.; Akhmediev, N., Moving breathers and breather-to-soliton conversions for the Hirota equation, Proc R Soc Lond Ser A Math Phys Eng Sci, 471, Article 20150130 pp. (2015) · Zbl 1371.35270
[78] Chowdury, A.; Kedziora, D. J.; Ankiewicz, A.; Akhmediev, N., Breather-to-soliton conversions described by the quintic equation of the nonlinear Schrödinger hierarchy, Phys Rev E, 91, Article 032928 pp. (2015)
[79] Wang, L.; Zhang, J. H.; Wang, Z. Q.; Liu, C.; Li, M.; Qi, F. H., Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation, Phys Rev E, 93, Article 012214 pp. (2016)
[80] Wang, L.; Zhang, J. H.; Liu, C.; Li, M.; Qi, F. H., Breather transition dynamics, peregrine combs and walls, and modulation instability in a variable-coeffcient nonlinear Schrödinger equation with higher-order effects, Phys Rev E, 93, Article 062217 pp. (2016)
[81] Zhang, J. H.; Wang, L.; Liu, C., Superregular breathers, characteristics of nonlinear stage of modulation instability induced by higher-order effects, Proc R Soc Lond Ser A Math Phys Eng Sci, 473, Article 20160681 pp. (2017) · Zbl 1404.35398
[82] Zhao, L. C.; Li, S. C.; Ling, L. M., W-shaped solitons generated from a weak modulation in the Sasa-Satsuma equation, Phys Rev E, 93, Article 032215 pp. (2016)
[83] Gao, P.; Duan, L.; Zhao, L. C.; Yang, Z. Y.; Yang, W. L., Dynamics of perturbations at the critical points between modulation instability and stability regimes, Chaos, 29, Article 083112 pp. (2019) · Zbl 1420.37106
[84] Duan, L.; Zhao, L. C.; Xu, W. H.; Liu, C.; Yang, Z. Y.; Yang, W. L., Soliton excitations on a continuous-wave background in the modulational instability regime with fourth-order effects, Phys Rev E, 95, Article 042212 pp. (2017)
[85] Duan, L.; Yang, Z. Y.; Gao, P.; Yang, W. L., Excitation conditions of several fundamental nonlinear waves on continuous-wave background, Phys Rev E, 99, Article 012216 pp. (2019)
[86] Liu, C.; Yang, Z. Y.; Zhao, L. C.; Duan, L.; Yang, G. Y.; Yang, W. L., Symmetric and asymmetric optical multipeak solitons on a continuous wave background in the femtosecond regime, Phys Rev E, 94, Article 042221 pp. (2016)
[87] Wang, L.; Zhu, Y. J.; Wang, Z. Q.; Xu, T.; Qi, F. H.; Xue, Y. S., Asymmetric rogue waves, breather-to-soliton conversion, and nonlinear wave interactions in the Hirota-Maxwell-Bloch system, J Phys Soc Japan, 85, Article 024001 pp. (2016)
[88] Liu, C.; Yang, Z. Y.; Zhao, L. C.; Yang, W. L., Transition, coexistence, and interaction of vector localized waves arising from higher-order effects, Ann Phys, NY, 362, 130 (2015)
[89] Ren, Y.; Yang, Z. Y.; Liu, C.; Yang, W. L., Different types of nonlinear localized and periodic waves in an erbium-doped fiber system, Phys. Lett. A, 379, 2991 (2015)
[90] Wang, L.; Wang, Z. Q.; Zhang, J. H.; Qi, F. H.; Li, M., Stationary nonlinear waves, superposition modes and modulational instability characteristics in the AB system, Nonlinear Dynam, 86, 185 (2016)
[91] Hirota, R., The direct method in soliton theory (2004), Cambridge University Press · Zbl 1099.35111
[92] Satsuma, J., N-soliton solution of the two-dimensional Korteweg-de Vries equation, J Phys Soc Japan, 40, 286 (1976) · Zbl 1334.35296
[93] Wang, X.; Wei, J.; Geng, X. G., Rational solutions for a (3+1)-dimensional nonlinear evolution equation, Commun Nonlinear Sci Numer Simul, 83, Article 105116 pp. (2020) · Zbl 1450.35242
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.