×

Numerical methods with particular solutions for nonhomogeneous Stokes and Brinkman systems. (English) Zbl 1497.35149

Summary: This paper deals with the numerical approximation of solutions of Stokes and Brinkman systems using meshless methods. The aim is to solve a problem containing a nonzero body force, starting from the well known decomposition in terms of a particular solution and the solution of a homogeneous force problem. We propose two methods for the numerical construction of a particular solution. One method is based on the Neuber-Papkovich potentials, which we extend to nonhomogeneous Brinkman problems. A second method relies on a Helmholtz-type decomposition for the body force and enables the construction of divergence-free basis functions. Such basis functions are obtained from Hänkel functions and justified by new density results for the space \(H^1(\Omega)\). Several 2D numerical experiments are presented in order to discuss the feasibility and accuracy of both methods.

MSC:

35J25 Boundary value problems for second-order elliptic equations
35Q35 PDEs in connection with fluid mechanics
65N38 Boundary element methods for boundary value problems involving PDEs
65N80 Fundamental solutions, Green’s function methods, etc. for boundary value problems involving PDEs
76D07 Stokes and related (Oseen, etc.) flows
Full Text: DOI

References:

[1] Abramowitz, M.; Stegun, I., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1964), New York: Dover, New York · Zbl 0171.38503
[2] Alves, CJS; Chen, CS, A new method of fundamental solutions applied to nonhomogeneous elliptic problems, Adv. Comput. Math., 23, 125-142 (2005) · Zbl 1070.65119 · doi:10.1007/s10444-004-1833-5
[3] Alves, CJS; Silvestre, AL, Density results using Stokeslets and a method of fundamental solutions for the Stokes equations, Eng. Anal. Bound. Elem., 28, 1245-1252 (2004) · Zbl 1079.76058 · doi:10.1016/j.enganabound.2003.08.007
[4] Barnett, AH; Betcke, T., Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains, J. Comput. Phys., 227, 14, 7003-7026 (2008) · Zbl 1170.65082 · doi:10.1016/j.jcp.2008.04.008
[5] Bogomolny, A., Fundamental solutions method for elliptic boundary value problems, SIAM J. Numer. Anal., 22, 644-669 (1985) · Zbl 0579.65121 · doi:10.1137/0722040
[6] Brinkman, HC, A calculation of the viscous force exerted by a flowing fluid in a dense swarm of particles, Appl. Sci. Res., A1, 27-34 (1949) · Zbl 0041.54204 · doi:10.1007/BF02120313
[7] Cheng, AHD; Hong, Y., An overview of the method of fundamental solutions - solvability, uniqueness, convergence, and stability, Eng. Anal. Bound. Elem., 120, 118-152 (2020) · Zbl 1464.65264 · doi:10.1016/j.enganabound.2020.08.013
[8] Evans, L., Partial differential equations Graduate Studies in Mathematics, vol. 19 (1998), Providence: American Mathematical Society, Providence · Zbl 0902.35002
[9] Girault, V., Raviart, P.-A.: Finite element methods for Navier-Stokes equations. Theory and algorithms. In: Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986) · Zbl 0585.65077
[10] Katsurada, M.; Okamoto, H., A mathematical study of the charge simulation method I, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 35, 507-518 (1988) · Zbl 0662.65100
[11] Karageorghis, A.; Lesnic, D., The method of fundamental solutions for the Oseen steady-state viscous flow past obstacles of known or unknown shapes, Numer. Methods Partial Differ. Equ., 35, 6, 2103-2119 (2019) · Zbl 1430.76390 · doi:10.1002/num.22404
[12] Krotkiewski, M.; Ligaarden, IS; Lie, K-A; Schmid, DW, On the importance of the Stokes-Brinkman equations for computing effective permeability in carbonate karst reservoirs, Commun. Comput. Phys., 10, 5, 1315-1332 (2011) · Zbl 1373.86003 · doi:10.4208/cicp.290610.020211a
[13] Li, X., On convergence of the method of fundamental solutions for solving the Dirichlet problem of Poisson’s equation, Adv. Comp. Math, 23, 265-277 (2005) · Zbl 1110.65100 · doi:10.1007/s10444-004-1782-z
[14] Martins, NFM; Rebelo, M., Meshfree methods for nonhomogeneous Brinkman flows, Comput. Math. with Appl., 68, 8, 872-886 (2014) · Zbl 1362.76040 · doi:10.1016/j.camwa.2014.08.002
[15] McLean, W., Strongly Elliptic Systems and Boundary Integral Equations (2000), New-York: Cambridge University Press, New-York · Zbl 0948.35001
[16] Nath, D.; Kalra, MS; Munshi, P., One-stage method of fundamental and particular solutions (MFS-MPS) for the steady Navier-Stokes equations in a lid-driven cavity, Eng. Anal. Bound. Elem., 58, 39-47 (2015) · Zbl 1403.76048 · doi:10.1016/j.enganabound.2015.03.003
[17] Neuber, H., Ein neuer Ansatz zur lösung räumlicher Probleme der elastizitätstheorie. Der Hohlkegel unter Einzellast als Beispiel, Z. Angew. Math. Mech., 14, 203-212 (1934) · JFM 60.0720.02 · doi:10.1002/zamm.19340140404
[18] Nguyen, VP; Rabczuk, T.; Bordas, S.; Duflot, M., Meshless methods: a review and computer implementation aspects, Math. Comput. Simul., 79, 3, 763-813 (2008) · Zbl 1152.74055 · doi:10.1016/j.matcom.2008.01.003
[19] Ogata, H.; Katsurada, M., Convergence of the invariant scheme of the method of fundamental solutions for two-dimensional potential problems in a Jordan region, Japan J. Indust. Appl. Math., 31, 231-262 (2014) · Zbl 1296.65181 · doi:10.1007/s13160-013-0131-3
[20] Papkovich, PF, The representation of the general integral of the fundamental equations of elasticity theory in terms of harmonic functions (in Russian), Izv. Akad. Nauk. SSSR Ser. Mat., 10, 1425-1435 (1932)
[21] Pozrikidis, C., Boundary integral and singularity methods for linearized viscous flows (1992), New-York: Cambridge University Press, New-York · Zbl 0772.76005 · doi:10.1017/CBO9780511624124
[22] Schaback, R., Error estimates and condition numbers for radial basis function interpolation, Adv. Comp. Math, 3, 251-264 (1995) · Zbl 0861.65007 · doi:10.1007/BF02432002
[23] Sincich, E.; Sarler, B., Non-singular method of fundamental solutions based on Laplace decomposition for 2D Stokes flow problems, CMES Comput. Model. Eng. Sci., 99, 5, 393-415 (2014) · Zbl 1356.76258
[24] Tran-Cong, T.; Blake, JR, General solutions of the Stokes’ flow equations, J. Math. Anal. Appl., 90, 1, 72-84 (1982) · Zbl 0503.76048 · doi:10.1016/0022-247X(82)90045-2
[25] Tsai, CC; Young, DL; Fan, CM; Chen, CW, MFS With time-dependent fundamental solutions for unsteady Stokes equations, Eng. Anal. Bound. Elem., 30, 10, 897-908 (2006) · Zbl 1195.76324 · doi:10.1016/j.enganabound.2006.04.006
[26] Varnhorn, W., Boundary value problems and integral equations for the stokes resolvent in bounded and exterior domains of \(\mathbb{R}^n\) ℝn, 206-224 (1998), New York: World Scientific Publishing, New York · Zbl 0933.35154
[27] Young, DL; Lin, YC; Fan, CM; Chiu, CL, The method of fundamental solutions for solving incompressible Navier-Stokes problems, Eng. Anal. Bound. Elem., 33, 8-9, 1031-1044 (2009) · Zbl 1244.76104 · doi:10.1016/j.enganabound.2009.03.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.