×

A quotient of the Lubin-Tate tower. II. (English) Zbl 1497.11134

The article at hand is a generalization of [J. Ludwig, Forum Math. Sigma 5, Paper No. e17, 41 p. (2017; Zbl 1434.11110)] following the same overall strategy. The main theorem proves that the quotient of the Lubin-Tate space at infinite level by the \((n-1,1)\)-block parabolic in \(\mathrm{GL}_n(K)\) is a perfectoid space for any \(n\) and any finite extension \(K\) over \(\mathbb{Q}_p\), while [loc. cit.] dealt with the case of \(n=2\), \(K=\mathbb{Q}_p\). It relies on two main ingredients: a) on the \(\mu\)-ordinary Hasse invariant in the case of unitary Shimura varieties à la Harris-Taylor (as sketched by T. Itō circa 2005); and b) the strategy of P. Scholze’s paper [Ann. Math. (2) 182, No. 3, 945–1066 (2015; Zbl 1345.14031)] to prove that the overconvergent anticanonical tower of certain Shimura varieties is perfectoid. Detailed presentations tailored to this precise case are given for both. An application is given to Scholze’s candidate for mod \(p\) local Langlands (resp. Jacquet-Langlands) correspondence in the guise of a vanishing theorem, as in [J. Ludwig, Forum Math. Sigma 5, Paper No. e17, 41 p. (2017; Zbl 1434.11110)], generalized with a different proof. The appendix by D. Hansen gives a purely local, explicit proof in the context of diamonds for the simpler case \(n=2\), and it shows in particular that the perfectoidness statement for quotient of the Lubin-Tate tower by the \((n-1,1)\)-block parabolic, does not extend to other maximal parabolic of block \((n-d,d)\) for \(d > 1\).

MSC:

11F77 Automorphic forms and their relations with perfectoid spaces
14G45 Perfectoid spaces and mixed characteristic
11S37 Langlands-Weil conjectures, nonabelian class field theory
14G22 Rigid analytic geometry

References:

[1] Artin, M., Grothendieck, A., Verdier, J.-L.: Theorie de Topos et Cohomologie Etale des Schemas I, II, III, Lecture Notes in Mathematics, vols. 269, 270, 305. Springer (1971) · Zbl 0234.00007
[2] Birkbeck, C., Feng, T., Hansen, D., Hong, S., Li, Q., Wang, A., Ye, L.: Extensions of vector bundles on the Fargues-Fontaine curve. J. Inst. Math. Jussieu (2018)
[3] Bijakowski, Stéphane; Hernandez, Valentin, Groupes \(p\)-divisibles avec condition de Pappas-Rapoport et invariants de Hasse, J. Éc. Polytech. Math., 4, 935-972 (2017) · Zbl 1423.14256 · doi:10.5802/jep.60
[4] Boxer, G.A.: Torsion in the Coherent Cohomology of Shimura Varieties and Galois Representations. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.). Harvard University (2015)
[5] Caraiani, A.; Gulotta, DR; Hsu, C-Y; Johansson, C.; Mocz, L.; Reinecke, E.; Shih, S-C, Shimura varieties at level \(\Gamma_1(p^\infty )\) and Galois representations, Compos. Math., 156, 6, 1152-1230 (2020) · Zbl 1452.11063 · doi:10.1112/S0010437X20007149
[6] Caraiani, A.; Scholze, P., On the generic part of the cohomology of compact unitary Shimura varieties, Ann. Math. (2), 186, 3, 649-766 (2017) · Zbl 1401.11108 · doi:10.4007/annals.2017.186.3.1
[7] de Jong, A.J.: Crystalline Dieudonné module theory via formal and rigid geometry. Inst. Hautes Études Sci. Publ. Math. (82), 5-96 (1996) 1995 · Zbl 0864.14009
[8] Fargues, L., Fontaine, J.-M.: Courbes et fibrés vectoriels en théorie de Hodge \(p\)-adique. Astérisque (406), xiii+382 (2018) (With a preface by Pierre Colmez) · Zbl 1470.14001
[9] Goldring, W.; Koskivirta, J-S, Strata Hasse invariants, Hecke algebras and Galois representations, Invent. Math., 217, 3, 887-984 (2019) · Zbl 1431.11071 · doi:10.1007/s00222-019-00882-5
[10] Goldring, W.; Nicole, M-H, The \(\mu \)-ordinary Hasse invariant of unitary Shimura varieties, J. Reine Angew. Math., 728, 137-151 (2017) · Zbl 1391.14045
[11] Hansen, D.: Quotients of adic spaces. Math. Res. Lett. (2016) http://www.math.columbia.edu/ hansen/overcon.pdf
[12] Hansen, D.: Moduli of local shtukas and Harris’s conjecture (2018) (preprint)
[13] Hernandez, V., Invariants de Hasse \(\mu \)-ordinaires, Ann. Inst. Fourier (Grenoble), 68, 4, 1519-1607 (2018) · Zbl 1423.14145 · doi:10.5802/aif.3193
[14] Hopkins, M.J., Gross, B.H.: Equivariant vector bundles on the Lubin-Tate moduli space. In: Topology and Representation Theory (Evanston, IL, 1992), Contemp. Math., vol. 158, pp. 23-88. Amer. Math. Soc., Providence (1994) · Zbl 0807.14037
[15] Harris, M., Taylor, R.: The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151. Princeton University Press, Princeton (2001) (With an appendix by Vladimir G. Berkovich) · Zbl 1036.11027
[16] Huber, R., A generalization of formal schemes and rigid analytic varieties, Math. Z., 217, 4, 513-551 (1994) · Zbl 0814.14024 · doi:10.1007/BF02571959
[17] Illusie, L.: Complexe cotangent et déformations. II. Lecture Notes in Mathematics, vol. 283. Springer, Berlin (1972) · Zbl 0238.13017
[18] Illusie, L.: Déformations de groupes de Barsotti-Tate (d’après A. Grothendieck), Number 127, pp. 151-198. Seminar on arithmetic bundles: the Mordell conjecture (Paris, 1983/84) (1985) · Zbl 1182.14050
[19] Illusie, L.: Frobenius et dégénérescence de Hodge. Introduction à la théorie de Hodge, Panor. Synthèses, vol. 3, pp. 113-168. Soc. Math., Paris (1996) · Zbl 0849.14002
[20] Ito, T.: Hasse invariants for some unitary Shimura varieties. Oberwolfach Report 28/2005
[21] Ito, T.: Hasse invariants for some unitary Shimura varieties and applications (2006). https://www.math.kyoto-u.ac.jp/ tetsushi/cv.html
[22] Kedlaya, KS, Noetherian properties of Fargues-Fontaine curves, Int. Math. Res. Not. IMRN, 8, 2544-2567 (2016) · Zbl 1404.13026 · doi:10.1093/imrn/rnv227
[23] Kedlaya, K.S., Liu, R.: Relative \(p\)-adic Hodge theory: foundations. Astérisque 371, 239 (2015) · Zbl 1370.14025
[24] Kohlhaase, J., Smooth duality in natural characteristic, Adv. Math., 317, 1-49 (2017) · Zbl 1475.22025 · doi:10.1016/j.aim.2017.06.038
[25] Koskivirta, J-S; Wedhorn, T., Generalized \(\mu \)-ordinary Hasse invariants, J. Algebra, 502, 98-119 (2018) · Zbl 1401.11109 · doi:10.1016/j.jalgebra.2018.01.011
[26] Lan, K-W; Suh, J., Vanishing theorems for torsion automorphic sheaves on compact PEL-type Shimura varieties, Duke Math. J., 161, 6, 1113-1170 (2012) · Zbl 1296.11072 · doi:10.1215/00127094-1548452
[27] Ludwig, J., A quotient of the Lubin-Tate tower, Forum Math. Sigma, 5, e17, 41 (2017) · Zbl 1434.11110 · doi:10.1017/fms.2017.15
[28] Paškūnas, V.: Some consequences of a theorem of J. Ludwig (2018). arXiv:1804.07567
[29] Rapoport, M., Zink, T.: Period spaces for \(p\)-divisible groups, Annals of Mathematics Studies, vol. 141. Princeton University Press, Princeton (1996) · Zbl 0873.14039
[30] Scheiderer, C., Quasi-augmented simplicial spaces, with an application to cohomological dimension, J. Pure Appl. Algebra, 81, 3, 293-311 (1992) · Zbl 0765.55001 · doi:10.1016/0022-4049(92)90062-K
[31] Scholze, P., \(p\)-adic Hodge theory for rigid-analytic varieties, Forum Math. Pi, 1, e1, 77 (2013) · Zbl 1297.14023 · doi:10.1017/fmp.2013.1
[32] Scholze, P., On torsion in the cohomology of locally symmetric varieties, Ann. Math. (2), 182, 3, 945-1066 (2015) · Zbl 1345.14031 · doi:10.4007/annals.2015.182.3.3
[33] Scholze, P.: Étale cohomology of diamonds (2017). arXiv:1709.07343
[34] Scholze, P., On the \(p\)-adic cohomology of the Lubin-Tate tower, Ann. Sci. Éc. Norm. Supér. (4), 51, 4, 811-863 (2018) · Zbl 1419.14031 · doi:10.24033/asens.2367
[35] Scholze, P.; Weinstein, Jared, Moduli of \(p\)-divisible groups, Camb. J. Math., 1, 2, 145-237 (2013) · Zbl 1349.14149 · doi:10.4310/CJM.2013.v1.n2.a1
[36] Scholze, P., Weinstein, J.: Berkeley lectures on \(p\)-adic geometry. Ann. Math. Stud. (2018) · Zbl 1475.14002
[37] Sen, S., Ramification in \(p\)-adic Lie extensions, Invent. Math., 17, 44-50 (1972) · Zbl 0242.12012 · doi:10.1007/BF01390022
[38] Tate, J.T.: \(p\)-divisible groups. In: Proc. Conf. Local Fields (Driebergen, 1966), pp. 158-183. Springer, Berlin (1967) · Zbl 0157.27601
[39] The Stacks Project authors.: The Stacks Project
[40] Weinstein, Jared, \({\rm Gal}(\overline{{ Q}}_p/{{ Q}}_p)\) as a geometric fundamental group, Int. Math. Res. Not. IMRN, 10, 2964-2997 (2017) · Zbl 1405.14048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.