×

Rectangular Heffter arrays: a reduction theorem. (English) Zbl 1497.05025

Summary: Let \(m\), \(n\), \(s\), \(k\) be four integers such that \(3 \leq s \leq n\), \(3 \leq k \leq m\) and \(m s = n k\). Set \(d = \gcd(s, k)\). In this paper we show how one can construct a Heffter array \(\mathrm{H}(m, n; s, k)\) starting from a square Heffter array \(\mathrm{H}(n k / d; d)\) whose elements belong to \(d\) consecutive diagonals. As an example of application of this method, we prove that there exists an integer \(\mathrm{H}(m, n; s, k)\) in each of the following cases: (i) \(d \equiv 0\pmod 4\); (ii) \(5 \leq d \equiv 1\pmod 4\) and \(n k \equiv 3\pmod 4\); (iii) \(d \equiv 2\pmod 4\) and \(n k \equiv 0\pmod 4\); (iv) \(d \equiv 3\pmod 4\) and \(n k \equiv 0, 3\pmod 4\). The same method can be applied also for signed magic arrays \(\mathrm{SMA}(m, n; s, k)\) and for magic rectangles \(\mathrm{MR}(m, n; s, k)\). In fact, we prove that there exists an \(\mathrm{SMA}(m, n; s, k)\) when \(d \geq 2\), and there exists an \(\mathrm{MR}(m, n; s, k)\) when either \(d \geq 2\) is even or \(d \geq 3\) and \(nk\) are odd. We also provide constructions of integer Heffter arrays and signed magic arrays when \(k\) is odd and \(s \equiv 0\pmod 4\).

MSC:

05B30 Other designs, configurations
05B15 Orthogonal arrays, Latin squares, Room squares
05B10 Combinatorial aspects of difference sets (number-theoretic, group-theoretic, etc.)

References:

[1] Archdeacon, D. S., Heffter arrays and biembedding graphs on surfaces, Electron. J. Comb., 22 (2015), #P1.74 · Zbl 1310.05142
[2] Archdeacon, D. S.; Boothby, T.; Dinitz, J. H., Tight Heffter arrays exist for all possible values, J. Comb. Des., 25, 5-35 (2017) · Zbl 1362.05029
[3] Archdeacon, D. S.; Dinitz, J. H.; Donovan, D. M.; Yazıcı, E. S., Square integer Heffter arrays with empty cells, Des. Codes Cryptogr., 77, 409-426 (2015) · Zbl 1323.05025
[4] Bonvicini, S.; Buratti, M.; Rinaldi, G.; Traetta, T., Some progress on the existence of 1-rotational Steiner triple systems, Des. Codes Cryptogr., 62, 63-78 (2012) · Zbl 1234.05044
[5] Brown, N.; Jordon, H., Signed Langford sequences and directed cyclic cycle systems, Australas. J. Comb., 79, 234-249 (2021) · Zbl 1465.05137
[6] Buratti, M., 1-Rotational Steiner triple systems over arbitrary groups, J. Comb. Des., 9, 215-226 (2001) · Zbl 0994.05033
[7] Burrage, K.; Donovan, D. M.; Cavenagh, N. J.; Yazıcı, E.Ş., Globally simple Heffter arrays \(H(n; k)\) when \(k \equiv 0, 3( \operatorname{mod} 4)\), Discrete Math., 343, Article #111787 pp. (2020) · Zbl 1435.05040
[8] Cavenagh, N. J.; Dinitz, J. H.; Donovan, D. M.; Yazıcı, E.Ş., The existence of square non-integer Heffter arrays, Ars Math. Contemp., 17, 369-395 (2019) · Zbl 1433.05064
[9] Cavenagh, N. J.; Donovan, D. M.; Yazıcı, E.Ş., Biembeddings of cycle systems using integer Heffter arrays, J. Comb. Des., 28, 900-922 (2020) · Zbl 07840145
[10] Costa, S.; Morini, F.; Pasotti, A.; Pellegrini, M. A., Globally simple Heffter arrays and orthogonal cyclic cycle decompositions, Australas. J. Comb., 72, 549-593 (2018) · Zbl 1405.05018
[11] Costa, S.; Morini, F.; Pasotti, A.; Pellegrini, M. A., A generalization of Heffter arrays, J. Comb. Des., 28, 171-206 (2020) · Zbl 1536.05109
[12] Costa, S.; Pasotti, A., On the number of non-isomorphic (simple) k-gonal biembeddings of complete multipartite graphs, preprint available at:
[13] Costa, S.; Pasotti, A., On λ-fold relative Heffter arrays and biembedding multigraphs on surfaces, Eur. J. Comb., 97, Article #103370 pp. (2021) · Zbl 1469.05022
[14] Costa, S.; Pasotti, A.; Pellegrini, M. A., Relative Heffter arrays and biembeddings, Ars Math. Contemp., 18, 241-271 (2020) · Zbl 1464.05030
[15] Dinitz, J. H.; Mattern, A. R.W., Biembedding Steiner triple systems and n-cycle systems on orientable surfaces, Australas. J. Comb., 67, 327-344 (2017) · Zbl 1375.05035
[16] Dinitz, J. H.; Wanless, I. M., The existence of square integer Heffter arrays, Ars Math. Contemp., 13, 81-93 (2017) · Zbl 1379.05021
[17] Francetić, N.; Mendelsohn, E., A survey of Skolem-type sequences and Rosa’s use of them, Math. Slovaca, 59, 39-76 (2009) · Zbl 1199.05001
[18] Harmuth, T., Über magische Quadrate und ähniche Zahlenfiguren, Arch. Math. Phys., 66, 286-313 (1881)
[19] Harmuth, T., Über magische Rechtecke mit ungeraden Seitenzahlen, Arch. Math. Phys., 66, 413-447 (1881) · JFM 13.0146.01
[20] Khodkar, A.; Ellis, B., Signed magic rectangles with two filled cells in each column, preprint available at: · Zbl 1461.05019
[21] Khodkar, A.; Leach, D., Magic rectangles with empty cells, Util. Math., 116, 45-56 (2020) · Zbl 1469.05025
[22] Khodkar, A.; Leach, D., Magic squares with empty cells, Ars Comb., 154, 45-52 (2021) · Zbl 1513.05051
[23] Khodkar, A.; Leach, D.; Ellis, B., Signed magic rectangles with three filled cells in each column, Bull. Inst. Comb. Appl., 90, 87-106 (2020) · Zbl 1461.05019
[24] Khodkar, A.; Schulz, C.; Wagner, N., Existence of some signed magic arrays, Discrete Math., 340, 906-926 (2017) · Zbl 1440.05050
[25] Morini, F.; Pellegrini, M. A., On the existence of integer relative Heffter arrays, Discrete Math., 343, Article #112088 pp. (2020) · Zbl 1447.05045
[26] Morini, F.; Pellegrini, M. A., Magic rectangles, signed magic arrays and integer λ-fold relative Heffter arrays, Australas. J. Comb., 80, 249-280 (2021) · Zbl 1468.05021
[27] Skolem, T., On certain distributions of integers in pairs with given differences, Math. Scand., 5, 57-68 (1957) · Zbl 0084.04304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.