×

New finite-time stability for fractional-order time-varying time-delay linear systems: a Lyapunov approach. (English) Zbl 1496.93106

Summary: The primary goal of this paper is to examine the finite-time stability and finite-time contractive stability of the linear systems in fractional domain with time-varying delays. We develop some sufficient criteria for finite-time contractive stability and finite-time stability utilizing fractional-order Lyapunov-Razumikhin technique. To validate the proposed conditions, two different types of dynamical systems are taken into account, one is general time-delay fractional-order system and another one is fractional-order linear time-varying time-delay system, furthermore the efficacy of the stability conditions is demonstrated numerically.

MSC:

93D40 Finite-time stability
93C05 Linear systems in control theory
93C43 Delay control/observation systems
Full Text: DOI

References:

[1] Amato, F.; Ariola, M.; Cosentino, C., Finite-time control of discrete-time linear systems: analysis and design conditions, Automatica, 46, 919-924 (2010) · Zbl 1191.93099
[2] Amato, F.; Ambrosino, R.; Ariola, M.; Cosentino, C., Finite-time stability and control (2014), Springer-Verlag: Springer-Verlag London · Zbl 1297.93001
[3] Amato, F.; De Tommasi, G.; Pironti, A., Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems, Automatica, 49, 2546-2550 (2013) · Zbl 1364.93737
[4] Amato, F.; Ariola, M.; Cosentino, C., Finite-time stability of linear time-varying systems: analysis and controller design, IEEE Trans. Automat. Contr., 55, 1003-1008 (2010) · Zbl 1368.93457
[5] Polyakov, A.; Efimov, D.; Perruquetti, W., Finite-time and fixed-time stabilization: implicit lyapunov function approach, Automatica, 51, 332-340 (2015) · Zbl 1309.93135
[6] Wang, Z.; Cao, J.; Cai, Z.; Abdel-Aty, M., A novel lyapunov theorem on finite/fixed-time stability of discontinuous impulsive systems, Chaos, 30, 013139 (2020) · Zbl 1476.34123
[7] Kumar, V.; Djemai, M.; Defoort, M.; Malik, M., Finite-time stability and stabilization results for switched impulsive dynamical systems on time scales, J. Franklin Inst., 358, 674-698 (2021) · Zbl 1455.93177
[8] Li, X.; Lin, X.; Li, S.; Zou, Y., Finite-time stability of switched nonlinear systems with finite-time unstable subsystems, J. Franklin Inst., 352, 1192-1214 (2015) · Zbl 1307.93192
[9] Peixoto, M. L.; Pessim, P. S.; Lacerda, M. J.; Palhares, R. M., Stability and stabilization for LPV systems based on lyapunov functions with non-monotonic terms, J. Franklin Inst., 357, 6595-6614 (2020) · Zbl 1447.93281
[10] Sun, Y.; Wu, Z., On the existence of linear copositive lyapunov functions for 3-dimensional switched positive linear systems, J. Franklin Inst., 350, 1379-1387 (2013) · Zbl 1293.93424
[11] Hachicho, O., A novel LMI-based optimization algorithm for the guaranteed estimation of the domain of attraction using rational lyapunov functions, J. Franklin Inst., 344, 535-552 (2007) · Zbl 1269.34062
[12] Weiss, L.; Infante, E., Finite time stability under perturbing forces and on product spaces, IEEE Trans. Automat. Contr., 12, 54-59 (1967) · Zbl 0168.33903
[13] Cheng, J.; Xiang, H.; Wang, H.; Liu, Z.; Hou, L., Finite-time stochastic contractive boundedness of markovian jump systems subject to input constraints, ISA Trans., 60, 74-81 (2016)
[14] Onori, S.; Dorato, P.; Galeani, S.; Abdallah, C. T., Finite Time Stability Design via Feedback Linearization, Proceedings of the 44th IEEE Conference on Decision and Control, 4915-4920 (2005)
[15] X. Li, X. Yang, S. Song, Lyapunov conditions for finite-time stability of time-varying time-delay systems, Automatica, 103, 2019, 135-140. · Zbl 1415.93188
[16] Chen, B.; Chen, J., Razumikhin-type stability theorems for functional fractional-order differential systems and applications, Appl. Math. Comput., 254, 63-69 (2015) · Zbl 1410.34209
[17] Wang, L.; Song, J.; Zhang, R.; Gao, F., Constrained model predictive fault-tolerant control for multi-time-delayed batch processes with disturbances: a Lyapunov-Razumikhin function method, J. Franklin Inst., 358, 9483-9509 (2021) · Zbl 1480.93124
[18] Wang, Q.; Liu, X., Impulsive stabilization of delay differential systems via the lyapunov-razumikhin method, Appl. Math. Lett., 20, 839-845 (2007) · Zbl 1159.34347
[19] Andreev, A. S.; Sedova, N. O., The method of lyapunov-razumikhin functions in stability analysis of systems with delay, Autom. Remote Control, 80, 1185-1229 (2019) · Zbl 1425.93214
[20] Pavlovic, G.; Jankovic, S., The razumikhin approach on general decay stability for neutral stochastic functional differential equations, J. Franklin Inst., 350, 2124-2145 (2013) · Zbl 1293.93766
[21] F. Ames, Calif, USA
[22] Peng, X.; Wang, Y.; Zuo, Z., Adaptive control for discontinuous variable-order fractional systems with disturbances, Nonlinear Dyn., 103, 1693-1708 (2021) · Zbl 1517.93052
[23] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations, volume 204 of North-Holland Mathematics Studies (2006), Elsevier Science B.V.: Elsevier Science B.V. Amsterdam, The Netherlands · Zbl 1092.45003
[24] Senol, B.; Yeroglu, C., Frequency boundary of fractional order systems with nonlinear uncertainties, J. Franklin Inst., 350, 1908-1925 (2013) · Zbl 1392.93035
[25] Stamova, I., On the lyapunov theory for functional differential equations of fractional order, Proc. Am. Math. Soc., 144, 1581-1593 (2016) · Zbl 1373.34118
[26] Ma, Y. J.; Wu, B. W.; Wang, Y. E., Finite-time stability and finitetime boundedness of fractional order linear systems, Neurocomputing, 173, 2076-2082 (2016)
[27] He, D.; Xu, L., Exponential stability of impulsive fractional switched systems with time delays, IEEE Trans. Circuits Syst. II, 68, 1972-1976 (2020)
[28] Zhang, S.; Yu, Y.; Yu, J., LMI Conditions for global stability of fractional-order neural networks, IEEE Trans. Neural Netw. Learn. Syst., 28, 2423-2433 (2016)
[29] Wu, H.; Zhang, X.; Xue, S.; Wang, L.; Wang, Y., LMI Conditions to global mittag-leffler stability of fractional-order neural networks with impulses, Neurocomputing, 193, 148-154 (2016)
[30] Wang, J.; Yang, C.; Xia, J.; Wu, Z. G.; Shen, H., Observer-based sliding mode control for networked fuzzy singularly perturbed systems under weighted try-once-discard protocol, IEEE Trans. Fuzzy Syst. (2021)
[31] Wang, J.; Xia, J.; Shen, H.; Xing, M.; Park, J. H., \( \mathcal{H}_\infty\) Synchronization for fuzzy markov jump chaotic systems with piecewise-constant transition probabilities subject to PDT switching rule, IEEE Trans. Fuzzy Syst., 29, 3082-3092 (2020)
[32] Liu, X.; Xia, J.; Wang, J.; Shen, H., Interval type-2 fuzzy passive filtering for nonlinear singularly perturbed PDT-switched systems and its application, J. Syst. Sci. Complex., 34, 2195-2218 (2021) · Zbl 1485.93591
[33] Fan, X.; Wang, Z., A fuzzy lyapunov function method to stability analysis of fractional order TS fuzzy systems, IEEE Trans. Fuzzy Syst. (2021)
[34] Zhang, X., Some results of linear fractional order time-delay system, Appl. Math. Comput., 197, 407-411 (2008) · Zbl 1138.34328
[35] Zhou, B.; Duan, G. R., Periodic lyapunov equation based approaches to the stabilization of continuous-time periodic linear systems, IEEE Trans. Automat. Contr., 57, 2139-2146 (2012) · Zbl 1369.93515
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.