×

Evolution of cooperation in the spatial prisoner’s dilemma game with extortion strategy under win-stay-lose-move rule. (English) Zbl 1496.91017

Summary: Extortion strategy and mobility have both been studied separately, and their roles for the evolution of cooperation are well known. In this paper, we combine these two mechanisms and explore the effects of one mechanism on another, especially for how spatial exclusion influences the dynamics. The model incorporates migration into the prisoner’s dilemma game with extortion and allows agents to change their spatial position governed by win-stay-lose-move rule. By means of Monte Carlo simulations, we show that when the population density is intermediate (neither too high or too low), empty sites weaken the cooperation-extortion alliance and allow cooperators to form compact clusters through migration, which then enhance network reciprocity in the populations. In this way, cooperation can be maintained in the structured populations with mobility, we thus provide a deeper understanding for the evolution of cooperation.

MSC:

91A22 Evolutionary games

References:

[1] Sigmund, K., The calculus of selfishness, vol. 6 (2010), Princeton University Press · Zbl 1189.91010
[2] Nowak, M. A., Evolutionary dynamics: exploring the equations of life (2006), Harvard University Press · Zbl 1115.92047
[3] Sigmund, K., Games of life: explorations in ecology, evolution and behavior (1993)
[4] Axelrod, R.; Hamilton, W. D., The evolution of cooperation, Science, 211, 4489, 1390-1396 (1981) · Zbl 1225.92037
[5] Szathmáry, E.; Smith, J. M., The major transitions in evolution (1995), WH Freeman Spektrum Oxford: WH Freeman Spektrum Oxford UK
[6] Von Neumann, J.; Morgenstern, O.; Kuhn, H. W., Theory of games and economic behavior (commemorative edition) (2007), Princeton University Press · Zbl 1112.91002
[7] Smith, J. M., Evolution and the theory of games (1982), Cambridge University Press · Zbl 0526.90102
[8] Weibull, J. W., Evolutionary game theory (1997), MIT Press
[9] Hofbauer, J.; Sigmund, K., Evolutionary games and population dynamics (1998), Cambridge University Press · Zbl 0914.90287
[10] Yang, H.-X.; Wang, W.-X.; Wu, Z.-X.; Lai, Y.-C.; Wang, B.-H., Diversity-optimized cooperation on complex networks, Phys Rev E, 79, 5, 056107 (2009)
[11] Nowak, M.; Sigmund, K., A strategy of win-stay, lose-shift that outperforms tit-for-tat in the prisoner’s dilemma game, Nature, 364, 6432, 56-58 (1993)
[12] Nowak, M. A., Five rules for the evolution of cooperation, Science, 314, 5805, 1560-1563 (2006)
[13] Nowak, M. A.; May, R. M., Evolutionary games and spatial chaos, Nature, 359, 6398, 826-829 (1992)
[14] Zhu, P.; Wang, X.; Jia, D.; Guo, Y.; Li, S.; Chu, C., Investigating the co-evolution of node reputation and edge-strategy in prisoner’s dilemma game, Appl Math Comput, 386, 125474 (2020) · Zbl 1497.91043
[15] Perc, M.; Szolnoki, A., Social diversity and promotion of cooperation in the spatial prisoner’s dilemma game, Phys Rev E, 77, 1, 011904 (2008)
[16] Press, W. H.; Dyson, F. J., Iterated prisoner’s dilemma contains strategies that dominate any evolutionary opponent, Proc Natl Acad Sci, 109, 26, 10409-10413 (2012) · Zbl 1264.91009
[17] Stewart, A. J.; Plotkin, J. B., Extortion and cooperation in the prisoner’s dilemma, Proc Natl Acad Sci, 109, 26, 10134-10135 (2012) · Zbl 1264.91010
[18] Hilbe, C.; Nowak, M. A.; Sigmund, K., Evolution of extortion in iterated prisoner’s dilemma games, Proc Natl Acad Sci, 110, 17, 6913-6918 (2013) · Zbl 1292.91031
[19] Adami, C.; Hintze, A., Evolutionary instability of zero-determinant strategies demonstrates that winning is not everything, Nat Commun, 4, 1, 1-8 (2013)
[20] Szolnoki, A.; Perc, M., Evolution of extortion in structured populations, Phys Rev E, 89, 2, 022804 (2014)
[21] Szolnoki, A.; Perc, M., Defection and extortion as unexpected catalysts of unconditional cooperation in structured populations, Sci Rep, 4, 5496 (2014)
[22] Hao, D.; Rong, Z.; Zhou, T., Extortion under uncertainty: zero-determinant strategies in noisy games, Phys Rev E, 91, 5, 052803 (2015)
[23] Rong, Z.; Wu, Z.-X.; Hao, D.; Chen, M. Z.; Zhou, T., Diversity of timescale promotes the maintenance of extortioners in a spatial prisoner’s dilemma game, New J Phys, 17, 3, 033032 (2015)
[24] Mao, Y.; Xu, X.; Rong, Z.; Wu, Z.-X., The emergence of cooperation-extortion alliance on scale-free networks with normalized payoff, EPL, 122, 5, 50005 (2018)
[25] González, M. C.; Lind, P. G.; Herrmann, H. J., System of mobile agents to model social networks, Phys Rev Lett, 96, 8, 088702 (2006)
[26] Enquist, M.; Leimar, O., The evolution of cooperation in mobile organisms, Anim Behav, 45, 4, 747-757 (1993)
[27] Hamilton, I. M.; Taborsky, M., Contingent movement and cooperation evolve under generalized reciprocity, Proc R Soc B, 272, 1578, 2259-2267 (2005)
[28] Perc, M.; Szolnoki, A., Coevolutionary games’a mini review, BioSystems, 99, 2, 109-125 (2010)
[29] Aktipis, C. A., Know when to walk away: contingent movement and the evolution of cooperation, J Theor Biol, 231, 2, 249-260 (2004) · Zbl 1447.92561
[30] Vainstein, M. H.; Silva, A. T.; Arenzon, J. J., Does mobility decrease cooperation?, J Theor Biol, 244, 4, 722-728 (2007) · Zbl 1450.92084
[31] Sicardi, E. A.; Fort, H.; Vainstein, M. H.; Arenzon, J. J., Random mobility and spatial structure often enhance cooperation, J Theor Biol, 256, 2, 240-246 (2009) · Zbl 1400.91074
[32] Helbing, D.; Yu, W., Migration as a mechanism to promote cooperation, Adv Complex Syst, 11, 04, 641-652 (2008) · Zbl 1152.91756
[33] Helbing, D.; Yu, W., The outbreak of cooperation among success-driven individuals under noisy conditions, Proc Natl Acad Sci, 106, 10, 3680-3685 (2009)
[34] Xiao, Z.; Chen, X.; Szolnoki, A., Leaving bads provides better outcome than approaching goods in a social dilemma, New J Phys, 22, 2, 023012 (2020)
[35] Lin, H.; Yang, D.-P.; Shuai, J., Cooperation among mobile individuals with payoff expectations in the spatial prisoner’s dilemma game, Chaos Solitons Fractals, 44, 1-3, 153-159 (2011)
[36] Cong, R.; Wu, B.; Qiu, Y.; Wang, L., Evolution of cooperation driven by reputation-based migration, PLoS ONE, 7, 5 (2012)
[37] Li, Y.; Ye, H.; Zhang, H., Evolution of cooperation driven by social-welfare-based migration, Physica A, 445, 48-56 (2016)
[38] Wang, J.; Chen, X.; Wang, L., Effects of migration on the evolutionary game dynamics in finite populations with community structures, Physica A, 389, 1, 67-78 (2010)
[39] Lin, Y.-T.; Yang, H.-X.; Wu, Z.-X.; Wang, B.-H., Promotion of cooperation by aspiration-induced migration, Physica A, 390, 1, 77-82 (2011)
[40] Chen, Y.-S.; Yang, H.-X.; Guo, W.-Z., Promotion of cooperation by payoff-driven migration, Physica A, 450, 506-514 (2016)
[41] Ichinose, G.; Saito, M.; Sayama, H.; Wilson, D. S., Adaptive long-range migration promotes cooperation under tempting conditions, Sci Rep, 3, 2509 (2013)
[42] Jiang, L.-L.; Wang, W.-X.; Lai, Y.-C.; Wang, B.-H., Role of adaptive migration in promoting cooperation in spatial games, Phys Rev E, 81, 3, 036108 (2010)
[43] Chen, X.; Szolnoki, A.; Perc, M., Risk-driven migration and the collective-risk social dilemma, Phys Rev E, 86, 3, 036101 (2012)
[44] Wang, Z.; Szolnoki, A.; Perc, M., If players are sparse social dilemmas are too: importance of percolation for evolution of cooperation, Sci Rep, 2, 369 (2012)
[45] Wang, Z.; Szolnoki, A.; Perc, M., Percolation threshold determines the optimal population density for public cooperation, Phys Rev E, 85, 3, 037101 (2012)
[46] Gintis, H., Game theory evolving: a problem-centered introduction to modeling strategic behavior (2000), Princeton University Press · Zbl 1159.91300
[47] Xu, X.; Rong, Z.; Wu, Z.-X.; Zhou, T.; Tse, C. K., Extortion provides alternative routes to the evolution of cooperation in structured populations, Phys Rev E, 95, 5, 052302 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.