×

Effect of noise in the quantum bidirectional direct communication protocol using non-maximally entangled states. (English) Zbl 1496.81039

Summary: Possibility of using non-maximally entangled states in quantum bidirectional direct communication has been shown recently by A. Srikanth and S. Balakrishnan [“Controller-independent quantum bidirectional communication using non-maximally entangled states”, Quantum Inf. Process. 19, Paper No. 133, 11 p. (2020; doi:10.1007/s11128-020-02628-2)]. The effect of noise in this protocol is analyzed by considering amplitude and phase damping models. Suitable combinations of messages and initial states are identified to minimize the effect of noise in the protocol. Further, we have shown the possibility of demarking the effects due to noise and the intruder.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P47 Quantum channels, fidelity
81P40 Quantum coherence, entanglement, quantum correlations
94A34 Rate-distortion theory in information and communication theory
60H40 White noise theory
Full Text: DOI

References:

[1] Srikanth, A.; Balakrishnan, S., Controller-independent quantum bidirectional communication using non-maximally entangled states, Quantum Inf. Process, 19, 4, 1-11 (2020) · Zbl 1508.81743 · doi:10.1007/s11128-020-02628-2
[2] Bennett, CH; Brassard, G., Quantum cryptography: public key distribution and coin tossing, Theor. Comput. Sci., 560, 7-11 (2014) · Zbl 1306.81030 · doi:10.1016/j.tcs.2014.05.025
[3] Bennett, CH; Brassard, G.; Mermin, ND, Quantum cryptography without Bell’s theorem, Phys. Rev. Lett., 68, 5, 557 (1992) · Zbl 0969.94500 · doi:10.1103/PhysRevLett.68.557
[4] Cabello, A., Quantum key distribution in the Holevo limit, Phys. Rev. Lett., 85, 26, 5635-5638 (2000) · doi:10.1103/PhysRevLett.85.5635
[5] Long, GL; Liu, XS, Theoretically efficient high-capacity quantum-key-distribution scheme, Phys. Rev. A, 65, 3 (2002) · doi:10.1103/PhysRevA.65.032302
[6] Nurhadi, A. I. and Syambas, N. R.: Quantum Key Distribution (QKD) Protocols: A Survey, IEEE 4th International Conference on Wireless and Telematics (ICWT) 1-5. doi:10.1109/ICWT.2018.8527822 (2018)
[7] Deng, FG; Long, GL; Liu, XS, Two step quantum direct communication protocol using Einstein-Podolsky-Rosen block, Phys. Rev. A, 68, 4 (2003) · doi:10.1103/PhysRevA.68.042317
[8] Boström, K.; Felbinger, T., Deterministic secure direct communication using entanglement, Phys. Rev. Lett., 89, 18, 187902 (2002) · doi:10.1103/PhysRevLett.89.187902
[9] Cai, QY; Li, BW, Improving the capacity of the Bostrom and Felbinger protocol, Phys. Rev. A, 69, 5 (2004) · doi:10.1103/PhysRevA.69.054301
[10] Chen, XB; Wang, TY; Du, JZ; Wen, QY; Zhu, FC, Controlled quantum secure direct communication with quantum encryption, Int. J. Quantum Inf., 6, 3, 543-551 (2008) · Zbl 1192.81057 · doi:10.1142/S0219749908003566
[11] Chen, XB; Wen, QY; Guo, FZ; Sun, Y.; Xu, G.; Zhu, FC, Controlled quantum secure direct communication with W state, Int. J. Quantum Inf., 6, 4, 899-906 (2008) · Zbl 1153.81008 · doi:10.1142/S0219749908004195
[12] Nguyen, BA, Quantum dialogue, Phys. Lett. A, 328, 1, 6-10 (2004) · Zbl 1134.81338 · doi:10.1016/j.physleta.2004.06.009
[13] Man, ZX; Zhang, ZJ; Li, Y., Quantum dialogue revisited, Chin. Phys. Lett., 22, 1, 22-24 (2005) · doi:10.1088/0256-307X/22/1/007
[14] Ji, X.; Zhang, S., Secure quantum dialogue based on single-photon, Chinese. Phys., 15, 7, 1418-1420 (2006) · doi:10.1088/1009-1963/15/7/005
[15] Man, ZX; Xia, YJ; Zhang, ZJ, Secure deterministic bidirectional communication without entanglement, Int. J. Quantum Inf., 4, 4, 739-746 (2006) · doi:10.1142/S0219749906002146
[16] Dong, L.; Xiu, XM; Gao, YJ; Chi, F., A controlled quantum dialogue protocol in the network using entanglement swapping, Opt. Commun., 281, 24, 6135-6138 (2008) · doi:10.1016/j.optcom.2008.09.030
[17] Ye, TY; Jiang, LZ, Improvement of controlled bidirectional quantum direct communication using a GHZ state, Chin. Phys. Lett., 30, 4 (2013) · doi:10.1088/0256-307X/30/4/040305
[18] Ye, TY; Jiang, LZ, Quantum dialogue without information leakage based on the entanglement swapping between any two bell states and the shared secret bell state, Phys. Scr., 89, 1, 015103 (2013) · doi:10.1088/0031-8949/89/01/015103
[19] Ye, TY, Robust quantum dialogue based on the entanglement swapping between any two logical bell states and the shared auxiliary logical bell state, Quantum Inf. Process, 14, 4, 1469-1486 (2015) · Zbl 1328.81073 · doi:10.1007/s11128-015-0934-z
[20] Gao, G., Two quantum dialogue protocols without information leakage, Opt. Commun., 283, 10, 2288-2293 (2010) · doi:10.1016/j.optcom.2010.01.022
[21] Wang, H.; Zhang, YQ; Liu, XF; Hu, YP, Efficient quantum dialogue using entangled states and entanglement swapping without information leakage, Quantum Inf. Process, 15, 6, 2593-2603 (2016) · Zbl 1348.81151 · doi:10.1007/s11128-016-1294-z
[22] Ye, TY, Large payload bidirectional quantum secure direct communication without information leakage, Int. J. Quantum Inf., 11, 5, 1350051 (2013) · Zbl 1287.81043 · doi:10.1142/S0219749913500512
[23] Shi, GF, Bidirectional quantum secure communication scheme based on bell states and auxiliary particles, Opt. Commun., 283, 24, 5275-5278 (2010) · doi:10.1016/j.optcom.2010.08.006
[24] Ye, TY, Quantum secure dialogue with quantum encryption, Commun. Theor. Phys., 62, 3, 338-342 (2014) · doi:10.1088/0253-6102/62/3/08
[25] Shi, GF; Tian, XL, Quantum secure dialogue based on single photons and controlled-not operations, J. Mod. Opt., 57, 20, 2027-2030 (2010) · doi:10.1080/09500340.2010.514072
[26] Gao, G.; Fang, M.; Wang, Y.; Zang, DJ, A ping-pong quantum dialogue scheme using genuine four-particle entangled states, Int. J. Theor. Phys., 50, 10, 3089-3095 (2011) · Zbl 1447.81049 · doi:10.1007/s10773-011-0809-8
[27] Ye, TY, Quantum dialogue without information leakage using a single quantum entangled state, Int. J. Theor. Phys., 53, 11, 3719-3727 (2014) · Zbl 1305.81046 · doi:10.1007/s10773-014-2124-7
[28] Kao, SH; Hwang, T., Controlled quantum dialogue robust against conspiring users, Quantum Inf. Process, 15, 10, 4313-4324 (2016) · Zbl 1348.81203 · doi:10.1007/s11128-016-1370-4
[29] Zarmehi, F.; Houshmand, M., Controlled bidirectional quantum secure direct communication network using classical XOR operation and quantum entanglement, IEEE Commun. Lett., 20, 10, 2071-2074 (2016) · doi:10.1109/LCOMM.2016.2589263
[30] Li, W.; Zha, XW; Yu, Y., Secure quantum dialogue protocol based on four-qubit cluster state, Int. J. Theor. Phys., 57, 2, 371-380 (2018) · Zbl 1394.81103 · doi:10.1007/s10773-017-3569-2
[31] Ye, TY; Ye, CQ, Semi-quantum dialogue based on single photons, Int. J. Theor. Phys., 57, 5, 1440-1454 (2018) · Zbl 1391.81054 · doi:10.1007/s10773-018-3672-z
[32] Ye, T., Information leakage resistant quantum dialogue against collective noise, Sci. China Phys. Mech. Astron., 57, 12, 2266-2275 (2014) · doi:10.1007/s11433-014-5566-2
[33] Ye, T., Fault tolerant channel-encrypting quantum dialogue against collective noise, Sci. China Phys. Mech. Astron., 58, 4, 1-10 (2015) · doi:10.1007/s11433-014-5613-z
[34] Zhang, MH; Cao, ZW; Peng, JY; Chai, G., Fault tolerant quantum dialogue protocol over a collective noise channel, Eur. Phys. J. D., 73, 3, 1-8 (2019) · doi:10.1140/epjd/e2019-90481-9
[35] Chang, CH; Luo, YP; Yang, CW; Hwang, T., Intercept-and-resend attack on controlled bidirectional quantum direct communication and its improvement, Quantum Inf. Process, 14, 9, 3515-3522 (2015) · Zbl 1325.81062 · doi:10.1007/s11128-015-1050-9
[36] Mohapatra, AK; Balakrishnan, S., Controller-independent bidirectional quantum direct communication, Quantum Inf. Process, 16, 6, 147 (2017) · Zbl 1373.81180 · doi:10.1007/s11128-017-1598-7
[37] Nielsen, M. A. and Chuang, I. L.: Quantum Computation and Quantum Information, (Cambridge University Press), Cambridge (2000) · Zbl 1049.81015
[38] Sharma, V.; Thapliyal, K.; Pathak, A.; Banerjee, S., A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols, Quantum Inf. Process, 15, 11, 4681-4710 (2016) · Zbl 1357.81078 · doi:10.1007/s11128-016-1396-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.