×

High spots for the ice-fishing problem with surface tension. (English) Zbl 1496.76030

Summary: In the ice-fishing problem, a half-space of fluid lies below an infinite rigid plate (“the ice”) with a hole. We investigate the ice-fishing problem including the effects of surface tension on the free surface. The dimensionless number that describes the effect of surface tension is called the Bond number. For holes that are infinite parallel strips or circular holes, we transform the problem to an equivalent eigenvalue integro-differential equation on an interval and expand in the appropriate basis (Legendre and radial polynomials, respectively). We use computational methods to demonstrate that the high spot, i.e., the maximal elevation of the fundamental sloshing profile, for the ice-fishing problem is in the interior of the free surface for large Bond numbers, but for a sufficiently small Bond number the high spot is on the boundary of the free surface. While several papers have proven high spot results in the absence of surface tension as it depends on the shape of the container, to the best of our knowledge, this is the first study investigating the effects of surface tension on the location of the high spot.

MSC:

76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing
76B45 Capillarity (surface tension) for incompressible inviscid fluids
35Q31 Euler equations

Software:

DLMF

References:

[1] F. Auteri, N. Parolini, and L. Quartapelle, Essential imposition of Neumann condition in Galerkin-Legendre elliptic solvers, J. Comput. Phys., 185 (2003), pp. 427-444, https://doi.org/10.1016/S0021-9991(02)00064-5. · Zbl 1017.65093
[2] T. B. Benjamin and J. C. Scott, Gravity-capillary waves with edge constraints, J. Fluid Mech., 92 (1979), pp. 241-267, https://doi.org/10.1017/S0022112079000616. · Zbl 0409.76020
[3] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang Jr, Spectral Methods in Fluid Dynamics, Springer, Berlin, 1988, https://doi.org/10.1007/978-3-642-84108-8. · Zbl 0658.76001
[4] B. Cocciaro, S. Faetti, and C. Festa, Experimental investigation of capillarity effects on surface gravity waves: Non-wetting boundary conditions, J. Fluid Mech., 246 (1993), pp. 43-66, https://doi.org/10.1017/S0022112093000035.
[5] A. Davis, Waves in the presence of an infinite dock with gap, IMA J. Appl. Math, 6 (1970), pp. 141-156, https://doi.org/10.1093/imamat/6.2.141. · Zbl 0207.27401
[6] E. Dussan, On the spreading of liquids on solid surfaces: Static and dynamic contact lines, Annu. Rev. Fluid Mech., 11 (1979), pp. 371-400, https://doi.org/10.1146/annurev.fl.11.010179.002103.
[7] O. M. Faltinsen and A. N. Timokha, Sloshing, Cambridge University Press, Cambridge, UK, 2009.
[8] D. W. Fox and J. R. Kuttler, Sloshing frequencies, Z. Angew. Math. Phys., 34 (1983), pp. 668-696, https://doi.org/10.1007/BF00948809. · Zbl 0539.76022
[9] B.-y. Guo and L.-l. Wang, Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces, J. Approx. Theory, 128 (2004), pp. 1-41, https://doi.org/10.1016/j.jat.2004.03.008. · Zbl 1057.41003
[10] P. Henrici, B. A. Troesch, and L. Wuytack, Sloshing frequencies for a half-space with circular or strip-like aperture, Z. Angew. Math. Phys., 21 (1970), pp. 285-318, https://doi.org/10.1007/BF01627938. · Zbl 0199.21001
[11] L. Hocking, The damping of capillary-gravity waves at a rigid boundary, J. Fluid Mech., 179 (1987), pp. 253-266, https://doi.org/10.1017/S0022112087001514. · Zbl 0622.76015
[12] L. Hocking, Waves produced by a vertically oscillating plate, J. Fluid Mech., 179 (1987), pp. 267-281, https://doi.org/10.1017/S0022112087001526. · Zbl 0622.76016
[13] R. A. Ibrahim, Liquid Sloshing Dynamics: Theory and Applications, Cambridge University Press, Cambridge, UK, 2005, https://doi.org/10.1017/CBO9780511536656. · Zbl 1103.76002
[14] N. D. Kopachevsky and S. G. Krein, Operator Approach to Linear Problems of Hydrodynamics: Volume 1: Self-adjoint Problems for Ideal Fluids, Oper. Theory Adv. Appl. 128, Birkhäuser, Basel, 2001, https://doi.org/10.1007/978-3-0348-8342-9. · Zbl 0979.76002
[15] V. Kozlov and N. Kuznetsov, The ice-fishing problem: The fundamental sloshing frequency versus geometry of holes, Math. Methods Appl. Sci., 27 (2004), pp. 289-312, https://doi.org/10.1002/mma.442. · Zbl 1042.35038
[16] T. Kulczycki and N. Kuznetsov, “High spots” theorems for sloshing problems, Bull. Lond. Math. Soc., 41 (2009), pp. 494-505, https://doi.org/10.1112/blms/bdp021. · Zbl 1173.35091
[17] T. Kulczycki and N. Kuznetsov, On the “high spots” of fundamental sloshing modes in a trough, Proc. R. Soc. A., 467 (2011), pp. 1491-1502, https://doi.org/10.1098/rspa.2010.0258. · Zbl 1219.76007
[18] T. Kulczycki and M. Kwaśnicki, On high spots of the fundamental sloshing eigenfunctions in axially symmetric domains, Proc. Lond. Math. Soc., 105 (2012), pp. 921-952, https://doi.org/10.1112/plms/pds015. · Zbl 1256.35211
[19] L. Landau, Bessel functions: Monotonicity and bounds, J. Lond. Math. Soc. (2), 61 (2000), pp. 197-215. · Zbl 0948.33001
[20] J. W. Miles, On the eigenvalue problem for fluid sloshing in a half-space, Z. Angew. Math. Phys., 23 (1972), pp. 861-869, https://doi.org/10.1007/BF01596214. · Zbl 0253.76017
[21] N. N. Moiseev, Introduction to the theory of oscillations of liquid-containing bodies, Adv. Appl. Mech., 8 (1964), pp. 233-289, https://doi.org/10.1016/S0065-2156(08)70356-9. · Zbl 0128.43005
[22] F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds, NIST Digital Libary of Mathematical Functions, Release 1.1.5 of 2022-03-15, 2022, http://dlmf.nist.gov.
[23] R. Piessens, Hankel transform, in The Transforms and Applications Handbook, 3rd ed., CRC Press, Boca Raton, FL, 2000, pp. 9-1-9-16, https://doi.org/10.1201/9781315218915.
[24] Polymath7: Establishing the hot spots conjecture for acute-angled triangles,https://asone.ai/polymath/index.php?title=The_hot_spots_conjecture.
[25] J. Shen, Efficient spectral-Galerkin method i. direct solvers of second-and fourth-order equations using Legendre polynomials, SIAM J. Sci. Comput., 15 (1994), pp. 1489-1505, https://doi.org/10.1137/0916006. · Zbl 0811.65097
[26] C. H. Tan, C. Hohenegger, and B. Osting, A variational characterization of fluid sloshing with surface tension, SIAM J. Appl. Math., 77 (2017), pp. 995-1019, https://doi.org/10.1137/16M1104330. · Zbl 1368.49058
[27] C. H. Tan, C. Hohenegger, and B. Osting, An Isoperimetric Sloshing Problem in a Shallow Container With Surface Tension, preprint, arXiv:2011.03766, 2021, https://arxiv.org/abs/2111.03766.
[28] B. Troesch, Sloshing frequencies in a half-space by Kelvin inversion, Pac. J. Math., 47 (1973), pp. 539-552, https://doi.org/10.2140/pjm.1973.47.539. · Zbl 0268.76009
[29] J. Vannekoski, The Method of Layer Potentials: Unique Solvability of the Dirichlet Problem for Laplace’s Equation in \(C^1\)-Domains With \(L^p\)-Boundary Data, Ph.D. thesis, University of Helsinki, Helsinki, Finland, 2014.
[30] F. Viola, P.-T. Brun, and F. Gallaire, Capillary hysteresis in sloshing dynamics: A weakly nonlinear analysis, J. Fluid Mech., 837 (2018), pp. 788-818, https://doi.org/10.1017/jfm.2017.860. · Zbl 1419.76073
[31] F. Viola and F. Gallaire, Theoretical framework to analyze the combined effect of surface tension and viscosity on the damping rate of sloshing waves, Phys. Rev. Fluids, 3 (2018), 094801, https://doi.org/10.1103/PhysRevFluids.3.094801.
[32] K. Wang, On the Neumann problem for harmonic functions in the upper half plane, J. Math. Anal. Appl., 419 (2014), pp. 839-848, https://doi.org/10.1016/j.jmaa.2014.04.076. · Zbl 1296.35052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.