×

An insight into computational challenges in damage mechanics: analysis of a softening Hooke’s spring. (English) Zbl 1496.74014

Giorgio, Ivan (ed.) et al., Theoretical analyses, computations, and experiments of multiscale materials. A tribute to Francesco dell’Isola. Cham: Springer. Adv. Struct. Mater. 175, 537-564 (2022).
Summary: While many efforts are being currently spent to forge reliable damage laws based on the physics of the materials to be studied, damage modeling is still addressed numerically too naively in many situations. This article highlights some topical conceptual aspects that have been up to now dealt with too superficially by comparing the performances of different numerical algorithms in solving Karush-Kuhn-Tucker conditions for a simple linearly softening Hooke’s spring. It is concluded that even such a primitive model, because of the multiplicity of solutions satisfying simultaneously equilibrium, damage law and irreversibility conditions, actually requires well-established numerical algorithms to face unexpected challenges. A comparison between different numerical strategies, beyond highlighting critical behaviors of traditional algorithms, permitted to observe an appealing robustness shown by an iterative strategy based on the fixed-point theorem. As a closure remark, evidences collected within this contribution naturally lead to the following question, which is left open for future studies: Is it possible to envisage the formulation of a criterion – possibly an energetic one, like that distinguishing stable and unstable solutions in elasticity – to establish which solution should be considered as valid in a given situation?
For the entire collection see [Zbl 1487.74006].

MSC:

74-10 Mathematical modeling or simulation for problems pertaining to mechanics of deformable solids
74A45 Theories of fracture and damage
Full Text: DOI

References:

[1] Auffray, N., dell’Isola, F., Eremeyev, V.A., Madeo, A., Rosi, G.: Analytical continuum mechanics à la hamilton-piola least action principle for second gradient continua and capillary fluids. Math. Mech. Solids 20(4), 375-417 (2015) · Zbl 1327.76008
[2] Barchiesi, E., dell’Isola, F., Hild, F., Seppecher, P.: Two-dimensional continua capable of large elastic extension in two independent directions: asymptotic homogenization, numerical simulations and experimental evidence. Mech. Res. Commun. 103, 103-466 (2020a)
[3] Barchiesi, E., Eugster, S.R., dell’Isola, F., Hild, F.: Large in-plane elastic deformations of bipantographic fabrics: asymptotic homogenization and experimental validation. Math. Mech. Solids 25(3), 739-767 (2020b) · Zbl 1446.74171
[4] Barchiesi, E., dell’Isola, F., Hild, F.: On the validation of homogenized modeling for bipantographic metamaterials via digital image correlation. Int. J. Solids Struct. 208, 49-62 (2021a)
[5] Barchiesi, E., Yang, H., Tran, C., Placidi, L., Müller, W.H.: Computation of brittle fracture propagation in strain gradient materials by the FEniCS library. Math. and Mech. Solids 26(3), 325-340 (2021b) · Zbl 07357405
[6] Boutin, C., Giorgio, I., Placidi, L., et al.: Linear pantographic sheets: asymptotic micro-macro models identification. Math. Mech. Complex Syst. 5(2), 127-162 (2017) · Zbl 1457.74171
[7] Cazzani, A., Rosati, L., Ruge, P.: The contribution of Gustav R. Kirchhoff to the dynamics of tapered beams. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik 97(10), 1174-1203 (2017) · Zbl 07775412
[8] Ching, W.Y., Rulis, P., Ouyang, L., Aryal, S., Misra, A.: Theoretical study of the elasticity, mechanical behavior, electronic structure, interatomic bonding, and dielectric function of an intergranular glassy film model in prismatic β-si 3 n 4. Phys. Rev. B 81(21), 214,120 (2010)
[9] Chopra, A.K.: Dynamics of Structures, 3rd edition. Pearson Prentice Hall, Upper Saddle River, NJ 07458, USA (2007)
[10] Crisfield, M.: A fast incremental/iterative solution procedure that handles “snap-through”. Comput. Struct. 13(1), 55-62 (1981) · Zbl 0479.73031
[11] Crisfield, M.A.: Non-Linear Finite Element Analysis of Solids and Structures, vol. 1: Essentials. John Wiley & Sons, Ltd., The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, United Kingdom (2001)
[12] Cuomo, M., Contrafatto, L., Greco, L.: A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int. J. Eng. Sci. 80, 173-188 (2014) · Zbl 1423.74055
[13] dell’Isola, F., Seppecher, P., Madeo, A.: How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D’Alembert”. Zeitschrift für angewandte Mathematik und Physik 63(6), 1119-1141 (2012) · Zbl 1330.76016
[14] dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, nonlocal and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20(8), 887-928 (2015) · Zbl 1330.74006
[15] dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. In: Proc. Royal Soc. Math. Phys. Eng. Sci. 472(2185), 20150,790 (2016)
[16] dell’Isola, F., Corte, A.D., Giorgio, I.: Higher-gradient continua: the legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math. Mech. Solids 22(4), 852-872 (2017) · Zbl 1371.74024
[17] dell’Isola, F., Seppecher, P., Alibert, J.J., Lekszycki, T., Grygoruk, R., Pawlikowski, M., Steigmann, D., Giorgio, I., Andreaus, U., Turco, E., et al.: Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Cont. Mech. Thermodynam. 31(4), 851-884 (2019a)
[18] dell’Isola, F., Seppecher, P., Spagnuolo, M., Barchiesi, E., Hild, F., Lekszycki, T., Giorgio, I., Placidi, L., Andreaus, U., Cuomo, M., et al.: Advances in pantographic structures: design, manufacturing, models, experiments and image analyses. Cont. Mech. Thermodynam. 31(4), 1231-1282 (2019b)
[19] dell’Isola, F., Turco, E., Barchiesi, E.: Lagrangian discrete models: Applications to metamaterials. Discrete Continuum Models for Complex Metamaterials, p. 197 (2020)
[20] Dharmawardhana, C., Misra, A., Aryal, S., Rulis, P., Ching, W.: Role of interatomic bonding in the mechanical anisotropy and interlayer cohesion of csh crystals. Cement Concrete Res. 52, 123-130 (2013)
[21] Dharmawardhana, C., Bakare, M., Misra, A., Ching, W.Y.: Nature of interatomic bonding in controlling the mechanical properties of calcium silicate hydrates. J. Am. Ceramic Soc. 99(6), 2120-2130 (2016)
[22] Dittmann, M., Aldakheel, F., Schulte, J., Wriggers, P., Hesch, C.: Variational phase-field formulation of non-linear ductile fracture. Comput. Methods Appl. Mech. Eng. 342, 71-94 (2018) · Zbl 1440.74025
[23] Eremeyev, V.A., dell’Isola, F., Boutin, C., Steigmann, D.: Linear pantographic sheets: existence and uniqueness of weak solutions. J. Elast. 132(2), 175-196 (2018) · Zbl 1398.74011
[24] Eugster, S.R., dell’Isola, F.: Exegesis of the Introduction and Sect. I from “Fundamentals of the Mechanics of Continua” by e. hellinger. ZAMM-J. Appl. Mathe. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 97(4), 477-506 (2017a) · Zbl 07775186
[25] Eugster, S.R., dell’Isola, F.: Exegesis of the Introduction and Sect. I from “Fundamentals of the Mechanics of Continua” by E. Hellinger. ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 97(4), 477-506 (2017b) · Zbl 07775186
[26] Eugster, S.R., dell’Isola, F.: Exegesis of Sect. II and III. A from “Fundamentals of the Mechanics of Continua” by E. Hellinger. ZAMM-J. Appl. Math. Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 98(1), 31-68 (2018) · Zbl 07776747
[27] Formica, G., Vaiana, N., Rosati, L., Lacarbonara, W.: Pathfollowing of high-dimensional hysteretic systems under periodic forcing. Nonlinear Dynam. 103(4), 3515-3528 (2021)
[28] Gibson, L., Ashby, M., Zhang, J., Triantafillou, T.: Failure surfaces for cellular materials under multiaxial loads-i modelling. Int. J. Mech. Sci. 31(9), 635-663 (1989)
[29] Giorgio, I., Rizzi, N., Turco, E.: Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis. Proc. Royal Soc. A: Math. Phys. Eng. Sci. 473(2207), 20170,636 (2017) · Zbl 1404.74064
[30] Grazioso, S., Di Gironimo, G., Rosati, L., Siciliano, B.: Modeling and simulation of hybrid soft robots using finite element methods: Brief overview and benefits, vol. 15, pp 335-340 (2021)
[31] Hill, R.: A variational principle of maximum plastic work in classical plasticity. Q. J. Mech. Appl. Math. 1(1), 18-28 (1948) · Zbl 0035.40902
[32] Ju, J.: Isotropic and anisotropic damage variables in continuum damage mechanics. J. Eng. Mech. 116(12), 2764-2770 (1990)
[33] Ju, J.: On two-dimensinal self-consistent micromechanical damage models for brittle solids. Int. J. Solids Struct. 27(2), 227-258 (1991)
[34] Losanno, D., Madera Sierra, I., Spizzuoco, M., Marulanda, J., Thomson, P.: Experimental performance of unbonded polyester and carbon fiber reinforced elastomeric isolators under bidirectional seismic excitation. Eng. Struct. 209 (2020)
[35] Losanno, D., Palumbo, F., Calabrese, A., Barrasso, T., Vaiana, N.: Preliminary investigation of aging effects on recycled rubber fiber reinforced bearings (RR-FRBs). J. Earthq. Eng. (2021)
[36] McKenna, F.: OpenSees: A framework for earthquake engineering simulation. Comput. Sci. Eng. 13(4), 58-66 (2011)
[37] Misra, A., Poorsolhjouy, P.: Grain-and macro-scale kinematics for granular micromechanics based small deformation micromorphic continuum model. Mech. Res. Commun. 81, 1-6 (2017)
[38] Misra, A., Poorsolhjouy, P.: Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics. Math. Mech. Solids 25(10), 1778-1803 (2020) · Zbl 07259257
[39] Placidi, L., Barchiesi, E.: Energy approach to brittle fracture in strain-gradient modelling. Proc. Royal Soc. A: Math. Phys. Eng. Sci. 474(2210), 20170,878 (2018) · Zbl 1402.74094
[40] Placidi, L., Barchiesi, E., Misra, A.: A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Math. Mech. Complex Syst. 6(2), 77-100 (2018a) · Zbl 1452.74019
[41] Placidi, L., Misra, A., Barchiesi, E.: Two-dimensional strain gradient damage modeling: a variational approach. Zeitschrift für angewandte Mathematik und Physik 69(3), 1-19 (2018b) · Zbl 1393.74168
[42] Placidi, L., Misra, A., Barchiesi, E.: Simulation results for damage with evolving microstructure and growing strain gradient moduli. Cont. Mech. Thermodynam. 31(4), 1143-1163 (2019)
[43] Placidi, L., Barchiesi, E., Misra, A., Andreaus, U.: Variational methods in continuum damage and fracture mechanics. Encycloped. Cont. Mech. 2634-2643 (2020a)
[44] Placidi, L., dell’Isola, F., Barchiesi, E.: Heuristic homogenization of euler and pantographic beams. In: Mechanics of Fibrous Materials and Applications, pp 123-155. Springer (2020b)
[45] Poudel, L., Tamerler, C., Misra, A., Ching, W.Y.: Atomic-scale quantification of interfacial binding between peptides and inorganic crystals: The case of calcium carbonate binding peptide on aragonite. J. Phys. Chem. C 121(51), 28,354-28,363 (2017)
[46] Rahali, Y., Giorgio, I., Ganghoffer, J., dell’Isola, F.: Homogenization à la piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sc. 97, 148-172 (2015) · Zbl 1423.74794
[47] Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. 1: Functional Analysis, 2nd ed. Academic Press Inc., San Diego, CA, USA (1980) · Zbl 0459.46001
[48] Riks, E.: An incremental approach to the solution of snapping and buckling problems. Int. J. Solids Struct. 15(7), 529-551 (1979) · Zbl 0408.73040
[49] Serpieri, R., Sessa, S., Rosati, L.: A mitc-based procedure for the numerical integration of a continuum elastic-plastic theory of through-the-thickness-jacketed shell structures. Comp. Struct. 191, 209-220 (2018)
[50] Sessa, S.: Modified OpenSees v.3.0.3 executable https://bit.ly/3rupjrj. https://bit.ly/3rUPJrj, last visited: August 2021 (2021)
[51] Sessa, S.: Thermodynamic compatibility conditions of a new class of hysteretic materials. Cont. Mech. Thermodynam. 34(1), 61-79 (2022)
[52] Sessa S, Serpieri R, Rosati L (2017) A continuum theory of through-the-thickness jacketed shells for the elasto-plastic analysis of confined composite structures: Theo. Numer. Assessment. Compos. Part B: Eng. 113, 225-242
[53] Sessa, S., Marmo, F., Vaiana, N., De Gregorio, D., Rosati, L.: Strength hierarchy provisions for transverse confinement systems of shell structural elements. Compos. Part B: Eng. 163, 413-423 (2019a)
[54] Sessa, S., Marmo, F., Vaiana, N., Rosati, L.: Probabilistic assessment of axial force-biaxial bending capacity domains of reinforced concrete sections. Meccan. 54(9), 1451-1469 (2019b)
[55] Spagnuolo, M., Barcz, K., Pfaff, A., dell’Isola, F., Franciosi, P.: Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mech. Res. Commun. 83, 47-52 (2017)
[56] Timofeev, D., Barchiesi, E., Misra, A., Placidi, L.: Hemivariational continuum approach for granular solids with damage-induced anisotropy evolution. Math. Mech. Solids p 1081286520968149 (2020) · Zbl 07357426
[57] Triantafillou, T., Zhang, J., Shercliff, T., Gibson, L., Ashby. M.: Failure surfaces for cellular materials under multiaxial loads-ii comparison of models with experiment. Int. J. Mech. Sci. 31(9), 665-678 (1989)
[58] Turco, E.: Modelling of two-dimensional Timoshenko beams in Hencky fashion. In: Developments and Novel Approaches in Nonlinear Solid Body Mechanics, pp. 159-177, Springer (2020)
[59] Turco, E., Barchiesi, E.: Equilibrium paths of Hencky pantographic beams in a three-point bending problem. Math. Mech. Complex Syst. 7(4), 287-310 (2019) · Zbl 1434.74076
[60] Turco, E., dell’Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Zeitschrift für angewandte Mathematik und Physik 67(4), 1-28 (2016) · Zbl 1432.74158
[61] Turco, E., dell’Isola, F., Misra, A.: A nonlinear Lagrangian particle model for grains assemblies including grain relative rotations. Int. J. Numer. Analyt. Methods Geomech. 43(5), 1051-1079 (2019)
[62] Turco, E., Barchiesi, E., Giorgio, I., dell’Isola, F.: A Lagrangian Hencky-type non-linear model suitable for metamaterials design of shearable and extensible slender deformable bodies alternative to timoshenko theory. Int. J. Non-Linear Mech. 123, 103,481 (2020)
[63] Vaiana, N., Spizzuoco, M., Serino, G.: Wire rope isolators for seismically base-isolated lightweight structures: experimental characterization and mathematical modeling. Eng. Struct. 140, 498-514 (2017)
[64] Vaiana, N., Sessa, S., Marmo, F., Rosati, L.: A class of uniaxial phenomenological models for simulating hysteretic phenomena in rate-independent mechanical systems and materials. Nonlinear Dynam. 93(3), 1647-1669 (2018)
[65] Vaiana, N., Sessa, S., Paradiso, M., Rosati, L.: Accurate and efficient modeling of the hysteretic behavior of sliding bearings, 3, 5291-5303 (2019)
[66] Vaiana, N., Capuano, R., Sessa, S., Marmo, F., Rosati, L.: Nonlinear dynamic analysis of seismically base-isolated structures by a novel opensees hysteretic material model. Appl. Sci. 11(3), 900 (2021a)
[67] Vaiana, N., Losanno, D., Ravichandran, N.: A novel family of multiple springs models suitable for biaxial rate-independent hysteretic behavior. Comput. Struct. 244 (2021b)
[68] Vaiana, N., Sessa, S., Rosati, L.: A generalized class of uniaxial rate-independent models for simulating asymmetric mechanical hysteresis phenomena. Mech. Syst. Sig. Proc. 146 (2021c)
[69] Valoroso, N., Fedele, R.: Characterization of a cohesive-zone model describing damage and de-cohesion at bonded interfaces. Sensitivity analysis and mode-i parameter identification. Int. J. Solids Struct. 47(13), 1666-1677 (2010) · Zbl 1194.74182
[70] Valoroso, N., Rosati, L.: Consistent derivation of the constitutive algorithm for plane stress isotropic plasticity. Part i: Theoretical formulation. Int. J. Solids Struct. 46(1), 74-91 (2009a) · Zbl 1168.74320
[71] Valoroso, N., Rosati, L.: Consistent derivation of the constitutive algorithm for plane stress isotropic plasticity. Part ii: Computational issues. Int. J. Solids Struct. 46(1), 92-124 (2009b) · Zbl 1168.74321
[72] Valoroso, N., Stolz, C.: Progressive damage in quasi-brittle solids. Lect. Notes Mech. Eng. 408-418 (2020)
[73] Wu, J.Y., Nguyen, V.P., Zhou, H., Huang, Y.: A variationally consistent phase-field anisotropic damage model for fracture. Comput. Meth. Appl. Mech. Eng. 358 (2020) · Zbl 1441.74220
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.