×

Approximate Laplace importance sampling for the estimation of expected Shannon information gain in high-dimensional Bayesian design for nonlinear models. (English) Zbl 1496.62010

Summary: One of the major challenges in Bayesian optimal design is to approximate the expected utility function in an accurate and computationally efficient manner. We focus on Shannon information gain, one of the most widely used utilities when the experimental goal is parameter inference. We compare the performance of various methods for approximating expected Shannon information gain in common nonlinear models from the statistics literature, with a particular emphasis on Laplace importance sampling (LIS) and approximate Laplace importance sampling (ALIS), a new method that aims to reduce the computational cost of LIS. Specifically, in order to centre the importance distributions LIS requires computation of the posterior mode for each of a large number of simulated possibilities for the response vector. ALIS substantially reduces the amount of numerical optimization that is required, in some cases eliminating all optimization, by centering the importance distributions on the data-generating parameter values wherever possible. Both methods are thoroughly compared with existing approximations including Double Loop Monte Carlo, nested importance sampling, and Laplace approximation. It is found that LIS and ALIS both give an efficient trade-off between mean squared error and computational cost for utility estimation, and ALIS can be up to 70% cheaper than LIS. Usually ALIS gives an approximation that is cheaper but less accurate than LIS, while still being efficient, giving a useful addition to the suite of efficient methods. However, we observed one case where ALIS is both cheaper and more accurate. In addition, for the first time we show that LIS and ALIS yield superior designs to existing methods in problems with large numbers of model parameters when combined with the approximate co-ordinate exchange algorithm for design optimization.

MSC:

62-08 Computational methods for problems pertaining to statistics
62K05 Optimal statistical designs

References:

[1] Bates, DM; Watts, DG, Nonlinear Regression Analysis and its Applications (1988), New York: Wiley, New York · Zbl 0728.62062 · doi:10.1002/9780470316757
[2] Beck, J.; Dia, BM; Espath, LF; Long, Q.; Tempone, R., Fast Bayesian experimental design: Laplace-based importance sampling for the expected information gain, Comput. Methods Appl. Mech. Eng., 334, 523-553 (2018) · Zbl 1440.62293 · doi:10.1016/j.cma.2018.01.053
[3] Bernardo, JM, Expected information as expected utility, Ann. Stat., 7, 686-690 (1979) · Zbl 0407.62002 · doi:10.1214/aos/1176344689
[4] Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, VB, Julia: a fresh approach to numerical computing, SIAM Rev., 59, 65-98 (2017) · Zbl 1356.68030 · doi:10.1137/141000671
[5] Chaloner, K.; Verdinelli, I., Bayesian experimental design: a review, Stat. Sci., 10, 273-304 (1995) · Zbl 0955.62617 · doi:10.1214/ss/1177009939
[6] Chernoff, H., Locally optimal designs for estimating parameters, Ann. Math. Stat., 24, 586-602 (1953) · Zbl 0053.10504 · doi:10.1214/aoms/1177728915
[7] DiCiccio, TJ; Kass, RE; Raftery, A.; Wasserman, L., Computing Bayes factors by combining simulation and asymptotic approximations, J. Am. Stat. Assoc., 92, 903-915 (1997) · Zbl 1050.62520 · doi:10.1080/01621459.1997.10474045
[8] Eddelbuettel, D.; François, R.; Allaire, J.; Ushey, K.; Kou, Q.; Russel, N.; Chambers, J.; Bates, D., Rcpp: Seamless R and C++ integration, J. Stat. Softw., 40, 1-18 (2011) · doi:10.18637/jss.v040.i08
[9] Eddelbuettel, D.; Sanderson, C., RcppArmadillo: accelerating R with high-performance C++ linear algebra, Comput. Stat. Data Anal., 71, 1054-1063 (2014) · Zbl 1471.62055 · doi:10.1016/j.csda.2013.02.005
[10] Englezou, Y.: Bayesian design for calibration of physical models, PhD thesis, University of Southampton. (2018) https://eprints.soton.ac.uk/427145/
[11] Feng, C.: Optimal Bayesian experimental design in the presence of model error, Master’s thesis, Center for Computational Engineering, Massachussets Institute of Technology (2015)
[12] Feng, C., Marzouk, Y.M.: A layered multiple importance sampling scheme for focused optimal Bayesian experimental design. (2019) arXiv preprintarXiv:1903.11187
[13] Foster, A., Jankowiak, M., Bingham, E., Horsfall, P., Teh, Y. W., Rainforth, T., Goodman, N.: Variational Bayesian optimal experimental design (2019). arXiv preprintarXiv:1903.05480
[14] Ge, H., Xu, K., Ghahramani, Z.: Turing: a language for flexible probabilistic inference, in ‘International Conference on Artificial Intelligence and Statistics, AISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain’, pp. 1682-1690 (2018). http://proceedings.mlr.press/v84/ge18b.html
[15] Gelman, A.; Carlin, JB; Stern, HS; Dunson, DB; Vehtari, A.; Rubin, DB, Bayesian Data Analysis (2013), Boca Raton: Chapman and Hall/CRC, Boca Raton · doi:10.1201/b16018
[16] Huan, X.; Marzouk, YM, Simulation-based optimal Bayesian experimental design for nonlinear systems, J. Comput. Phys., 232, 288-317 (2013) · doi:10.1016/j.jcp.2012.08.013
[17] Lemieux, C., Monte Carlo and Quasi-Monte Carlo Sampling (2009), New York: Springer, New York · Zbl 1269.65001
[18] Lindley, DV, On a measure of the information provided by an experiment, Ann. Math. Stat., 27, 986-1005 (1956) · Zbl 0073.14103 · doi:10.1214/aoms/1177728069
[19] Long, Q.; Scavino, M.; Tempone, R.; Wang, S., Fast estimation of expected information gains for Bayesian experimental designs based on Laplace approximations, Comput. Methods Appl. Mech. Eng., 259, 24-39 (2013) · Zbl 1286.62068 · doi:10.1016/j.cma.2013.02.017
[20] Müller, P.; Sansó, B.; De Iorio, M., Optimal Bayesian design by inhomogeneous Markov chain simulation, J. Am. Stat. Assoc., 99, 788-798 (2004) · Zbl 1117.62404 · doi:10.1198/016214504000001123
[21] Overstall, AM; McGree, JM; Drovandi, CC, An approach for finding fully Bayesian optimal designs using normal-based approximations to loss functions, Stat. Comput., 28, 343-358 (2018) · Zbl 1384.62277 · doi:10.1007/s11222-017-9734-x
[22] Overstall, AM; Woods, DC, Bayesian design of experiments using approximate coordinate exchange, Technometrics, 59, 458-470 (2017) · doi:10.1080/00401706.2016.1251495
[23] Overstall, A.; Woods, D.; Adamou, M., acebayes: An R package for Bayesian optimal design of experiments via approximate coordinate exchange, J. Stat. Softw., 95, 13, 1-33 (2019)
[24] Ryan, E.; Drovandi, C.; Pettitt, A., Fully Bayesian experimental design for pharmacokinetic studies, Entropy, 17, 1063-1089 (2015) · doi:10.3390/e17031063
[25] Ryan, KJ, Estimating expected information gains for experimental designs with application to the random fatigue-limit model, J. Comput. Graph. Stat., 12, 585-603 (2003) · doi:10.1198/1061860032012
[26] Senarathne, S.; Drovandi, CC; McGree, JM, A Laplace-based algorithm for Bayesian adaptive design, Stat. Comput., 30, 1183-1208 (2020) · Zbl 1452.62596 · doi:10.1007/s11222-020-09938-6
[27] Stan Development Team (2021) Stan Modeling Language Users Guide and Reference Manual, 2.27. https://mc-stan.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.