×

On Sobolev rough paths. (English) Zbl 1496.60119

The authors consider spaces of rough paths with Sobolev regularity and associated controlled rough differential equations. First they define the space of Sobolev rough paths using a fractional Sobolev norm. Typical estimates used for rough paths work for \(p\)-variation or related seminorms, but not for the fractional Sobolev norm presenting the main obstacle. In a suitable topology, the authors introduce the controlled rough paths of Sobolev type requiring a remainder term in the mixed Hölder-variation space. Then they show that solutions to the controlled rough differential equations driven by Sobolev rough paths also possess Sobolev regularity. Finally the authors prove local Lipschitz continuity of the Itô-Lyons map on the space of Sobolev rough paths with arbitrary low regularity with respect to the initial value, vector field and the driving signal.

MSC:

60L20 Rough paths
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems

References:

[1] Cass, Thomas; Friz, Peter, Densities for rough differential equations under Hörmander’s condition, Ann. Math. (2), 171, 3, 2115-2141 (2010) · Zbl 1205.60105
[2] Cuchiero, Christa; Larsson, Martin; Teichmann, Josef, Deep neural networks, generic universal interpolation, and controlled ODEs, SIAM J. Math. Data Sci. (2019), in press
[3] Feyel, Denis; de La Pradelle, Arnaud, Curvilinear integrals along enriched paths, Electron. J. Probab., 11, 34, 860-892 (2006) · Zbl 1110.60031
[4] Friz, Peter K.; Hairer, Martin, A Course on Rough Paths, Universitext (2014), Springer: Springer Cham, With an introduction to regularity structures · Zbl 1327.60013
[5] Filippov, A. F., Differential Equations with Discontinuous Righthand Sides, Mathematics and Its Applications (Soviet Series), vol. 18 (1988), Kluwer Academic Publishers Group: Kluwer Academic Publishers Group Dordrecht, translated from the Russian · Zbl 0664.34001
[6] Friz, Peter K.; Prömel, David J., Rough path metrics on a Besov-Nikolskii-type scale, Trans. Am. Math. Soc., 370, 12, 8521-8550 (2018) · Zbl 1428.60143
[7] Friz, Peter; Victoir, Nicolas, A variation embedding theorem and applications, J. Funct. Anal., 239, 2, 631-637 (2006) · Zbl 1114.46022
[8] Friz, Peter; Victoir, Nicolas, Multidimensional Stochastic Processes as Rough Paths. Theory and Applications (2010), Cambridge University Press · Zbl 1193.60053
[9] Gubinelli, Massimiliano; Imkeller, Peter; Perkowski, Nicolas, Paracontrolled distributions and singular PDEs, Forum Math. Pi, 3, Article e6 pp. (2015) · Zbl 1333.60149
[10] Gubinelli, Massimiliano, Controlling rough paths, J. Funct. Anal., 216, 1, 86-140 (2004) · Zbl 1058.60037
[11] Hairer, Martin, A theory of regularity structures, Invent. Math., 198, 269-504 (2014) · Zbl 1332.60093
[12] Hairer, Martin; Labbé, Cyril, The reconstruction theorem in Besov spaces, J. Funct. Anal., 273, 8, 2578-2618 (2017) · Zbl 1380.46031
[13] Hoshino, Masato, Iterated paraproducts and iterated commutator estimates in Besov spaces (2020), Preprint
[14] Hensel, Sebastian; Rosati, Tommaso, Modelled distributions of Triebel-Lizorkin type, Stud. Math., 252, 3, 251-297 (2020) · Zbl 1460.46024
[15] Kamont, A., Isomorphism of some anisotropic Besov and sequence spaces, Stud. Math., 110, 2, 169-189 (1994) · Zbl 0810.41010
[16] Lyons, Terry J.; Caruana, Michael; Lévy, Thierry, Differential Equations Driven by Rough Paths, Lecture Notes in Mathematics, vol. 1908 (2007), Springer: Springer Berlin · Zbl 1176.60002
[17] Lejay, Antoine, Yet another introduction to rough paths, (Séminaire de Probabilités XLII. Séminaire de Probabilités XLII, Lecture Notes in Math., vol. 1979 (2009), Springer: Springer Berlin), 1-101 · Zbl 1198.60002
[18] Liu, Chong; Prömel, David J.; Teichmann, Josef, Optimal extension to Sobolev rough paths (2018), Preprint
[19] Liu, Chong; Prömel, David J.; Teichmann, Josef, Characterization of nonlinear Besov spaces, Trans. Am. Math. Soc., 373, 1, 529-550 (2020) · Zbl 1441.30082
[20] Liu, Chong; Prömel, David J.; Teichmann, Josef, Stochastic analysis with modelled distributions, Stoch. Partial Differ. Equ., Anal. Computat. (2020), in press
[21] Lyons, Terry, On the nonexistence of path integrals, Proc. R. Soc. Lond. Ser. A, 432, 1885, 281-290 (1991) · Zbl 0745.60051
[22] Lyons, Terry J., Differential equations driven by rough signals, Rev. Mat. Iberoam., 14, 2, 215-310 (1998) · Zbl 0923.34056
[23] Montgomery, Richard, A Tour of Subriemannian Geometries, Their Geodesics and Applications, Mathematical Surveys and Monographs, vol. 91 (2002), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1044.53022
[24] Martin, Jörg; Perkowski, Nicolas, Paracontrolled distributions on Bravais lattices and weak universality of the 2d parabolic Anderson model, Ann. Inst. Henri Poincaré Probab. Stat., 55, 4, 2058-2110 (2019) · Zbl 1446.60047
[25] Perkowski, Nicolas; Prömel, David J., Pathwise stochastic integrals for model free finance, Bernoulli, 22, 4, 2486-2520 (2016) · Zbl 1346.60078
[26] Prömel, David J.; Trabs, Mathias, Rough differential equations driven by signals in Besov spaces, J. Differ. Equ., 260, 6, 5202-5249 (2016) · Zbl 1339.34065
[27] Zähle, Martina, Integration with respect to fractal functions and stochastic calculus. I, Probab. Theory Relat. Fields, 111, 3, 333-374 (1998) · Zbl 0918.60037
[28] Zähle, Martina, Integration with respect to fractal functions and stochastic calculus. II, Math. Nachr., 225, 145-183 (2001) · Zbl 0983.60054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.