×

Transverse invariants and exotic surfaces in the \(4\)-ball. (English) Zbl 1496.57022

Two smooth surfaces \(S\) and \(S'\) in a smooth \(4\)-manifold \(X\) are an exotic pair if \(S\) and \(S'\) are topologically, but not smoothly, isotopic. The main result in the paper under review is that there are infinitely many knots in \(\mathbb{S}^3\) each bounding countably many properly embedded, compact, orientable, smooth surfaces in the \(4\)-dimensional disc \(\mathbb{D}^4\) which are pairwise topologically isotopic but which cannot be sent one into the other via a diffeomorphism of \(\mathbb{D}^4\). In particular, one obtains infinitely many exotic pairs of properly embedded, smooth, orientable surfaces in \(\mathbb{D}^4\).
The construction of these surfaces is based on \(1\)-twist rim surgery. This technique was introduced by H. J. Kim [Geom. Topol. 10, 27–56 (2006; Zbl 1104.57018)] to produce compact oriented surfaces in \(\mathbb{CP}^2\) which are smoothly knotted, but topologically unknotted. Roughly speaking, twist rim surgery combines Zeeman twist-spinning construction of \(2\)-knots [E. C. Zeeman, Trans. Am. Math. Soc. 115, 471–495 (1965; Zbl 0134.42902)] and R. Fintushel and R. J. Stern’s rim surgery [Math. Res. Lett. 4, No. 6, 907–914 (1997; Zbl 0894.57014)]. Twist rim surgery allows the author to produce surfaces which are topologically isotopic, potentially not smoothly isotopic, without conditions on the fundamental group of their complement.
To obstruct two surfaces being sent one to the other via a diffeomorphism of \(\mathbb{D}^4\), the authors introduce a numerical invariant of properly embedded surfaces \[ \Omega(S)\in \mathbb{Z} \cup \{ -\infty \},\quad S\subset \mathbb{D}^4. \] This invariant is defined in terms of induced maps in Heegaard-Floer homology. The invariant \(\Omega\) behaves in a controlled way under twist rim surgery, and vanishes for quasi-positive surfaces pushed in the \(4\)-disk.
A key point in the proof of the main theorem is the non-vanishing of certain maps in Heegaard-Floer homology. To this end the authors prove that the (transverse version of the) LOSS invariant (see [P. Lisca et al., J. Eur. Math. Soc. (JEMS) 11, No. 6, 1307–1363 (2009; Zbl 1232.57017)] and [J. A. Baldwin et al., Geom. Topol. 17, No. 2, 925–974 (2013; Zbl 1285.57005)]) is preserved under the maps induced by some link cobordisms which are ascending surfaces in Weinstein manifolds. This is an interesting result on its own, and fits into a family of similar results due to various authors, e.g. P. Ozsváth and Z. Szabó [Duke Math. J. 129, No. 1, 39–61 (2005; Zbl 1083.57042)], A. Juhász [Adv. Math. 299, 940–1038 (2016; Zbl 1358.57021)], J. A. Baldwin and S. Sivek [J. Symplectic Geom. 16, No. 4, 959–1000 (2018; Zbl 1411.57019); Geom. Topol. 25, No. 3, 1087–1164 (2021; Zbl 1479.53080)].

MSC:

57K40 General topology of 4-manifolds
57K45 Higher-dimensional knots and links
57R58 Floer homology
57K10 Knot theory
57K18 Homology theories in knot theory (Khovanov, Heegaard-Floer, etc.)
57R55 Differentiable structures in differential topology

References:

[1] ; Akbulut, Turkish J. Math., 26, 81 (2002) · Zbl 1007.57019
[2] 10.4310/JSG.2018.v16.n4.a3 · Zbl 1411.57019 · doi:10.4310/JSG.2018.v16.n4.a3
[3] 10.2140/gt.2021.25.1087 · Zbl 1479.53080 · doi:10.2140/gt.2021.25.1087
[4] 10.2140/gt.2013.17.925 · Zbl 1285.57005 · doi:10.2140/gt.2013.17.925
[5] 10.1016/S0764-4442(01)01945-0 · Zbl 1020.32020 · doi:10.1016/S0764-4442(01)01945-0
[6] 10.1090/coll/059 · doi:10.1090/coll/059
[7] 10.1142/S0129167X90000034 · Zbl 0699.58002 · doi:10.1142/S0129167X90000034
[8] 10.2140/pjm.2001.201.89 · Zbl 1049.57005 · doi:10.2140/pjm.2001.201.89
[9] 10.4310/JSG.2001.v1.n1.a3 · Zbl 1037.57021 · doi:10.4310/JSG.2001.v1.n1.a3
[10] 10.1016/S0040-9383(00)00023-9 · Zbl 1005.57012 · doi:10.1016/S0040-9383(00)00023-9
[11] 10.1090/S0273-0979-1987-15562-5 · Zbl 0635.57008 · doi:10.1090/S0273-0979-1987-15562-5
[12] 10.4310/MRL.1997.v4.n6.a10 · Zbl 0894.57014 · doi:10.4310/MRL.1997.v4.n6.a10
[13] ; Freedman, Topology of 4-manifolds. Princeton Mathematical Series, 39 (1990) · Zbl 0705.57001
[14] 10.2140/agt.2019.19.3683 · doi:10.2140/agt.2019.19.3683
[15] 10.1016/0040-9383(91)90027-2 · Zbl 0732.57010 · doi:10.1016/0040-9383(91)90027-2
[16] 10.2307/121005 · Zbl 0919.57012 · doi:10.2307/121005
[17] 10.2140/gt.2021.25.1441 · Zbl 1490.57004 · doi:10.2140/gt.2021.25.1441
[18] 10.1007/s00222-008-0173-3 · Zbl 1171.57031 · doi:10.1007/s00222-008-0173-3
[19] 10.2140/agt.2006.6.1429 · Zbl 1129.57039 · doi:10.2140/agt.2006.6.1429
[20] 10.1016/j.aim.2016.06.005 · Zbl 1358.57021 · doi:10.1016/j.aim.2016.06.005
[21] 10.1007/s00029-017-0368-9 · Zbl 1397.57026 · doi:10.1007/s00029-017-0368-9
[22] 10.2140/gt.2020.24.179 · Zbl 1467.57023 · doi:10.2140/gt.2020.24.179
[23] 10.2140/gt.2006.10.27 · Zbl 1104.57018 · doi:10.2140/gt.2006.10.27
[24] 10.2140/agt.2008.8.2263 · Zbl 1190.57019 · doi:10.2140/agt.2008.8.2263
[25] 10.1090/S0002-9947-08-04482-6 · Zbl 1204.57035 · doi:10.1090/S0002-9947-08-04482-6
[26] 10.4171/JEMS/183 · Zbl 1232.57017 · doi:10.4171/JEMS/183
[27] 10.2307/1998993 · Zbl 0413.57015 · doi:10.2307/1998993
[28] 10.1016/j.aim.2003.05.001 · Zbl 1062.57019 · doi:10.1016/j.aim.2003.05.001
[29] 10.1215/S0012-7094-04-12912-4 · Zbl 1083.57042 · doi:10.1215/S0012-7094-04-12912-4
[30] 10.1016/j.aim.2005.03.014 · Zbl 1099.53058 · doi:10.1016/j.aim.2005.03.014
[31] 10.2140/agt.2008.8.615 · Zbl 1144.57011 · doi:10.2140/agt.2008.8.615
[32] 10.2140/gt.2008.12.941 · Zbl 1144.57012 · doi:10.2140/gt.2008.12.941
[33] 10.1016/0040-9383(83)90031-9 · Zbl 0505.57003 · doi:10.1016/0040-9383(83)90031-9
[34] 10.1090/S0273-0979-1993-00397-5 · Zbl 0789.57004 · doi:10.1090/S0273-0979-1993-00397-5
[35] 10.2140/gtm.1999.2.555 · doi:10.2140/gtm.1999.2.555
[36] 10.2140/pjm.2009.239.157 · Zbl 1149.57031 · doi:10.2140/pjm.2009.239.157
[37] 10.1142/S0218216515200035 · Zbl 1326.57040 · doi:10.1142/S0218216515200035
[38] 10.2307/2161054 · Zbl 0810.57019 · doi:10.2307/2161054
[39] 10.2307/1994281 · Zbl 0134.42902 · doi:10.2307/1994281
[40] 10.2140/agt.2017.17.3461 · Zbl 1387.57020 · doi:10.2140/agt.2017.17.3461
[41] 10.4171/QT/124 · Zbl 1478.57035 · doi:10.4171/QT/124
[42] 10.1112/topo.12085 · Zbl 1455.57020 · doi:10.1112/topo.12085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.